4.7 Article

Regulator of Actin-Based Motility (RoaM) Downregulates Actin Tail Formation by Rickettsia rickettsii and Is Negatively Selected in Mammalian Cell Culture

Journal

MBIO
Volume 13, Issue 2, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/mbio.00353-22

Keywords

Rickettsia; actin; vector-borne diseases

Categories

Funding

  1. Intramural Research Program of the NIAID/NIH

Ask authors/readers for more resources

Genetic evidence suggests that the motility of spotted fever group Rickettsia is a regulated process, and serial passage in cell culture may cause the bacteria to lose non-conserved essential genes.
The mechanism of actin-based motility of spotted fever group Rickettsia has been studied extensively, but here, we provide genetic evidence that motility is a regulated process in R. rickettsii. The findings also suggest that serial passage of rickettsial strains in cell culture may cause the bacteria to lose essential genes that are no longer conserved under natural selective pressure. The etiological agent of Rocky Mountain spotted fever, Rickettsia rickettsii, is an obligately intracellular pathogen that induces the polymerization of actin filaments to propel the bacterium through the cytoplasm and spread to new host cells. Cell-to-cell spread via actin-based motility is considered a key virulence determinant for spotted fever group rickettsiae, as interruption of sca2, the gene directly responsible for actin polymerization, has been shown to reduce fever in guinea pigs. However, little is known about how, or if, motility is regulated by the bacterium itself. We isolated a hyperspreading variant of R. rickettsii Sheila Smith that produces actin tails at an increased rate. A1G_06520 (roaM [regulator of actin-based motility]) was identified as a negative regulator of actin tail formation. Disruption of RoaM significantly increased the number of actin tails compared to the wild-type strain but did not increase virulence in guinea pigs; however, overexpression of RoaM dramatically decreased the presence of actin tails and moderated fever response. Localization experiments suggest that RoaM is not secreted, while reverse transcription-quantitative PCR (RT-qPCR) data show that various levels of RoaM do not significantly affect the expression of the known rickettsial actin-regulating proteins sca2, sca4, and rickA. Taken together, the data suggest a previously unrecognized level of regulation of actin-based motility in spotted fever group rickettsiae. Although this gene is intact in many isolates of spotted fever, transitional, and ancestral group Rickettsia spp., it is often ablated in highly passaged laboratory strains. Serial passage experiments revealed strong negative selection of roaM in Vero 76 cells. IMPORTANCE The mechanism of actin-based motility of spotted fever group Rickettsia has been studied extensively, but here, we provide genetic evidence that motility is a regulated process in R. rickettsii. The findings also suggest that serial passage of rickettsial strains in cell culture may cause the bacteria to lose essential genes that are no longer conserved under natural selective pressure. These findings are likely relevant to the interpretation of studies concerning virulence determinants of rickettsiae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available