4.8 Article

New insight into ammonium oxidation processes and mechanisms mediated by manganese oxide in constructed wetlands

Journal

WATER RESEARCH
Volume 215, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118251

Keywords

Constructed wetlands; Ammonium; Manganese oxide; Psychrobacter; Zooloea; N2O emission

Funding

  1. National Natural Science Foundation of China [52100112, U20A20326]
  2. Special Funding Project of Chongqing Postdoctoral Researchers [XmT20190696]
  3. Creative Research Groups in Colleges and Universities of Chongqing [CXQT21001]

Ask authors/readers for more resources

This study investigated the mechanisms and effects of manganese oxide-mediated ammonium oxidation in wetlands. The results showed that wetlands with manganese sand had a higher removal efficiency of ammonium nitrogen and reduced nitrous oxide emission. The manganese sand delayed the oxidation of ammonium nitrogen, and the presence of specific bacterial communities promoted the removal of ammonium nitrogen.
Manganese oxide (MnOx) mediated ammonium (NH4+) oxidation in wetlands is receiving increased interest; however, the biochemical mechanisms of this process are vague due to only few studies have focused on terrestrial ecosystems. In this study, three subsurface flow constructed wetlands (CWs), high/low content of Mn-sand CW (HMn-CW/LMn-CW) and quartz sand CW (C-CWs), were set up to explore the extent of ammonium nitrogen (NH4+-N) removal and underlying mechanisms. According to the surface characteristics of Mn-sand, MnOx nanospheres were loaded as birnessite on the sand, while changes of the Mn/N contents indicated involvement of Mn-sand in NH4+-N removal. During the 120-day operation, higher extent of NH4+-N removal with decreased nitrous oxide (N2O) emission was achieved in the HMn-CW (76%) than in the LMn-CW (73%) and C-CW (67%). According to the distribution of nitrogen compounds and Mn2+, Mn-sand in the HMn-CW delayed oxidation of NH4+ and production of nitrate and nitrite. High abundance of Zooloea and Psychrobacter was observed in the Mn-sand layer of HMn-CW, corresponding to a higher observed NH4+-N removal. NH4+ oxidation to hydroxylamine and then to nitrite was enhanced in HMn-CW due to ammonia monooxygenase genes being promoted. The decrease of N2O emission was closely related to the genus TM7a, verified by Pearson correlation analysis. Our findings expand the knowledge of MnOx-mediated NH4+ oxidation in wetlands and support the potential application of manganese oxide for effective nitrogen removal in CWs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available