4.5 Article

Phenotypic and biomarker evaluation of zebrafish larvae as an alternative model to predict mammalian hepatotoxicity

Journal

JOURNAL OF APPLIED TOXICOLOGY
Volume 36, Issue 9, Pages 1194-1206

Publisher

WILEY
DOI: 10.1002/jat.3288

Keywords

Non-animal alternative assay; hepatotoxicity; zebrafish larva; gene expression markers; compound uptake

Categories

Funding

  1. Federal Public Service, Health, Belgium [RF 10/6232]

Ask authors/readers for more resources

Zebrafish phenotypic assays have shown promise to assess human hepatotoxicity, though scoring of liver morphology remains subjective and difficult to standardize. Liver toxicity in zebrafish larvae at 5days was assessed using gene expression as the biomarker approach, complementary to phenotypic analysis and analytical data on compound uptake. This approach aimed to contribute to improved hepatotoxicity prediction, with the goal of identifying biomarker(s) as a step towards the development of transgenic models for prioritization. Morphological effects of hepatotoxic compounds (acetaminophen, amiodarone, coumarin, methapyrilene and myclobutanil) and saccharin as the negative control were assessed after exposure in zebrafish larvae. The hepatotoxic compounds induced the expected zebrafish liver degeneration or changes in size, whereas saccharin did not have any phenotypic adverse effect. Analytical methods based on liquid chromatography-mass spectrometry were optimized to measure stability of selected compounds in exposure medium and internal concentration in larvae. All compounds were stable, except amiodarone for which precipitation was observed. There was a wide variation between the levels of compound in the zebrafish larvae with a higher uptake of amiodarone, methapyrilene and myclobutanil. Detection of hepatocyte markers (CP, CYP3A65, GC and TF) was accomplished by in situ hybridization of larvae to coumarin and myclobutanil and confirmed by real-time reverse transcription-quantitative polymerase chain reaction. Experiments showed decreased expression of all markers. Next, other liver-specific biomarkers (i.e. FABP10a and NR1H4) and apoptosis (i.e. CASP-3A and TP53) or cytochrome P450-related (CYP2K19) and oxidoreductase activity-related (ZGC163022) genes, were screened. Links between basic mechanisms of liver injury and results of biomarker responses are described. Copyright (c) 2016 John Wiley & Sons, Ltd. Zebrafish phenotypic assays have shown promise to assess human hepatotoxicity, though scoring of liver morphology remains subjective and difficult to standardize. Liver toxicity in zebrafish larvae at 5 days was assessed using gene expression as the biomarker approach, complementary to phenotypic analysis and analytical data on compound uptake. This approach aimed to contribute to improved hepatotoxicity prediction, with the goal of identifying biomarker(s) as a step towards the development of transgenic models for prioritization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available