4.6 Article

Extracellular vesicles from follicular fluid may improve the nuclear maturation rate of in vitro matured mare oocytes

Journal

THERIOGENOLOGY
Volume 188, Issue -, Pages 116-124

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.theriogenology.2022.05.022

Keywords

In vitro maturation; Extracellular vesicles; Oocytes; Mare; COC; Follicular fluid

Ask authors/readers for more resources

This study aims to investigate the effect of follicular fluid extracellular vesicles (ffEVs) on the in vitro maturation (IVM) of equine oocytes. The supplementation of ffEVs from small ovarian follicles was found to significantly improve the IVM rate of mare oocytes, indicating the important role of ffEVs in this process and their potential to enhance equine assisted reproductive techniques (ART) development.
The in vitro maturation (IVM) of equine oocytes is still not efficient and does not yield consistent results. The specific requirements of equine oocytes during this process are still largely unknown, which hinders the development of assisted reproductive techniques (ART) in this species. Because the ovarian follicle microenvironment supports oocytes in their acquisition of developmental competence, follicular fluid seems to be a substantial source of bioactive factors that could support the IVM process. Extracellular vesicles (EVs) are cell-secreted molecules in body fluids that are able to deliver molecular signals and transfer genetic information (mRNA, miRNA) between donor and recipient cells. Hence, our hypothesis is that follicular fluid EVs (ffEVs) from small (<20 mm) ovarian follicles can improve the in vitro maturation rate of mare oocytes. To test our hypothesis, equine ovarian follicular fluid was aspirated and ffEVs were isolated by ultracentrifugation, then characterized using nanoparticle tracking analysis and flow cytometry. Additionally, ffEVs were labeled using the ExoGlow-protein EV labeling kit (System Biosciences, Palo Alto, CA). Cumulus-oocyte complexes (COCs) were matured using a one-step method (Method I, continuous culture for 24-38 h) or a two-step method (Method II, initial denudation after 24 h), in the presence (200 mu g protein/ml) or absence of ffEVs. The results show the internalization of ffEVs by equine cumulus cells and, for the first time, also by oocytes. The ffEV treatment during two-step culture had a positive effect on the maturation rate of compacted COCs compared to the control group (45.7% and 20.5%, respectively; p < 0.05). No effect of supplementation was observed on the maturation rate during one-step culture. Our results indicate that the supplementation of culture media with EVs isolated from the follicular fluid of small follicles can improve the IVM rate of mare oocytes, suggesting that ffEVs play an important role during this process and may enhance the development of equine ART. (C) 2022 The Authors. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available