4.7 Article

Microstructural and nanomechanical studies of PVD Cr coatings on SiC for LWR fuel cladding applications

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 441, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2022.128577

Keywords

SiC fuel cladding; Accident tolerant fuel; DCMS; HiPIMS; Nanoindentation; Pile-up

Funding

  1. U.S. Department of Energy [DE-NE0008800]
  2. University Nuclear Leadership Program
  3. National Science Foundation through the University of Wisconsin Materials Research Science and Engineering Center [DMR-1720415]

Ask authors/readers for more resources

The microstructure and nanomechanical properties of pure Cr coatings deposited on SiC using different physical vapor deposition (PVD) methods were studied to mitigate hydrothermal corrosion in light water reactors (LWR) with SiC-SiCf composite fuel cladding.
The microstructure and nanomechanical properties of pure Cr coatings deposited on SiC with various physical vapor deposition (PVD) methods have been investigated for the mitigation of hydrothermal corrosion of SiC-SiCf (SiC fiber-reinforced SiC matrix) composite fuel cladding in light water reactors (LWR). Cr coatings (4-7 mu m thick) were deposited on unbiased SiC substrates using six variants of magnetron sputtering processes: (i) standard (S-DCMS), (ii) pulsed (P-DCMS), (iii) ion-assisted (I-DCMS), and (iv) pulsed ion-assisted direct current magnetron sputtering (PI-DCMS), (v) high-power impulse magnetron sputtering (HiPIMS), and (vi) bipolar HiPIMS (B-HiPIMS). Microstructural characterization and nanoindentation testing were used to evaluate effects of deposition technique on coating microstructure and nanomechanical properties. The application of positive reverse pulses to the sputter target induced coarsening of the columnar grain structure, while ion bombardment of substrates during deposition promoted densification of the coating microstructure. Both effects are exemplified in B-HiPIMS deposition, resulting in a high-density microstructure with compressive residual stress. Material pile-up around nano-indents and plastic work during nanoindentation were analyzed to understand deformation behavior of the coatings. The results suggest the B-HiPIMS process to be among the promising methods for the deposition of Cr coatings on SiC-SiCf for LWR cladding application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available