4.5 Article

Experimental and simulation studies of SCIF considering non-uniform critical current

Journal

SUPERCONDUCTOR SCIENCE & TECHNOLOGY
Volume 35, Issue 7, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-6668/ac6bc9

Keywords

REBCO magnet; screening current; non-uniform critical current; DP coil arrangement; field homogeneity

Funding

  1. Synergetic Extreme Condition User Facility (SECUF)
  2. National Natural Science Foundation of China [12042506, 51807191]

Ask authors/readers for more resources

Rare-earth barium copper oxide (REBCO) magnets are effective in obtaining high magnetic fields, but large screening currents degrade the magnetic field quality. A new simulation model, considering dimensions and critical currents, was developed to improve the accuracy of predicting the magnetic field.
As an effective and reliable method of obtaining extremely high magnetic fields, rare-earth barium copper oxide (REBCO) magnets have contributed significantly to the development of condensed matter physics, chemistry, life sciences, and materials research. However, large screening currents in REBCO magnets can significantly degrade the magnetic field quality. Recent experiments on the inner insert of a 30 T superconducting magnet at the Institute of Electrical Engineering, Chinese Academy of Sciences showed that the measured magnetic field is highly asymmetric single-peaked field instead of the designed saddle-shaped fields, and it differs significantly from the values calculated based on the commonly-used uniform and symmetric screening current model. Therefore, a simulation model based on the T-A formulation with consideration of accurate dimensions and critical currents was developed. The simulation results with this new developed model indicate that the angle dependence can cause more than an 8.3% difference in the critical currents of the symmetrically located double pancake (DP) coils of the magnet. The average relative error between the measured and calculated magnetic field values was sharply reduced by a maximum of 44.4% after considering the non-uniform critical currents. In consideration of manufacturing uncertainties and non-uniform critical currents, better magnetic field quality of REBCO magnets can be achieved by arranging the location of each DP with this model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available