4.5 Article

Inspection and maintenance planning for offshore wind structural components: integrating fatigue failure criteria with Bayesian networks and Markov decision processes

Journal

STRUCTURE AND INFRASTRUCTURE ENGINEERING
Volume 18, Issue 7, Pages 983-1001

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/15732479.2022.2037667

Keywords

Offshore wind turbines; inspection and maintenance planning; fracture mechanics; failure criteria; failure assessment diagram; partially observable Markov decision processes

Funding

  1. Belgian Energy Transition Fund (FPS Economy)
  2. National Fund for Scientific Research in Belgium F.R.I.A. - F.N.R.S.

Ask authors/readers for more resources

This paper investigates the optimal management approach for offshore wind structures under fatigue deterioration conditions. By integrating fatigue failure criteria with Bayesian networks and Markov decision processes, more optimized and informed maintenance interventions can be formulated.
Exposed to the cyclic action of wind and waves, offshore wind structures are subject to fatigue deterioration processes throughout their operational life, therefore constituting a structural failure risk. In order to control the risk of adverse events, physics-based deterioration models, which often contain significant uncertainties, can be updated with information collected from inspections, thus enabling decision-makers to dictate more optimal and informed maintenance interventions. The identified decision rules are, however, influenced by the deterioration model and failure criterion specified in the formulation of the pre-posterior decision-making problem. In this paper, fatigue failure criteria are integrated with Bayesian networks and Markov decision processes. The proposed methodology is implemented in the numerical experiments, specified with various crack growth models and failure criteria, for the optimal management of an offshore wind structural detail under fatigue deterioration. Within the experiments, the crack propagation, structural reliability estimates, and the optimal policies derived through heuristics and partially observable Markov decision processes (POMDPs) are thoroughly analysed, demonstrating the capability of failure assessment diagram to model the structural redundancy in offshore wind substructures, as well as the adaptability of POMDP policies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available