4.7 Article

Structural basis of nanobodies neutralizing SARS-CoV-2 variants

Related references

Note: Only part of the references are listed.
Article Biochemistry & Molecular Biology

Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2

Colton J. Bracken et al.

Summary: This study presents a strategy to rapidly identify and assemble synthetic human VH domains for neutralizing SARS-CoV-2, which was proven to be effective through experimental validation.

NATURE CHEMICAL BIOLOGY (2021)

Article Cell Biology

Rational development of a human antibody cocktail that deploys multiple functions to confer Pan-SARS-CoVs protection

Hangping Yao et al.

Summary: This study developed a therapeutic antibody cocktail against SARS-CoV-2 by exploiting antibody cooperativity, consisting of two antibodies that achieved synergistic neutralization through S1 shielding and conformational locking, blocking receptor attachment and viral membrane fusion to combat viral mutation escape. Additionally, a hypothetical third antibody partner was identified for further reinforcement as pan-SARS-CoVs therapeutics.

CELL RESEARCH (2021)

Article Medicine, General & Internal

REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19

D. M. Weinreich et al.

Summary: Recent data indicate that complications and death from Covid-19 may be related to high viral loads. In this trial involving nonhospitalized patients, a cocktail of two neutralizing monoclonal antibodies (REGN-COV2) reduced viral load, with a greater effect in patients with no immune response or high viral load at baseline. Safety outcomes were similar between REGN-COV2 dose groups and the placebo group.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Editorial Material Medicine, General & Internal

Monoclonal Antibodies to Disrupt Progression of Early Covid-19 Infection

Myron S. Cohen

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Medicine, General & Internal

SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19

Peter Chen et al.

Summary: LY-CoV555, a neutralizing antibody, showed promising results in reducing viral load, improving symptoms, and lowering the risk of hospitalization among patients with mild or moderate Covid-19. While one of the doses appeared to accelerate the decline in viral load, others did not show significant effects by day 11.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Multidisciplinary Sciences

Prospective mapping of viral mutations that escape antibodies used to treat COVID-19

Tyler N. Starr et al.

Summary: Research has found that mutations in the receptor binding domain (RBD) of SARS-CoV-2 may potentially escape the action of the REGN-COV2 cocktail, providing important information for interpreting mutations observed during viral surveillance.

SCIENCE (2021)

Article Multidisciplinary Sciences

Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape

Paul-Albert Koenig et al.

Summary: In this study, new neutralizing nanobodies targeting the SARS-CoV-2 spike protein were developed, showing enhanced neutralizing activity through engineering technology and successfully suppressing the emergence of escape mutants. The findings suggest that nanobodies can neutralize through receptor binding competition and also render virions noninfectious.

SCIENCE (2021)

Article Microbiology

Robust SARS-CoV-2 infection in nasal turbinates after treatment with systemic neutralizing antibodies

Dongyan Zhou et al.

Summary: Human neutralizing antibodies demonstrated effective inhibition of SARS-CoV-2 infection in the lungs but were less effective in nasal turbinates, indicating implications for subprotection, reinfection, and vaccine development.

CELL HOST & MICROBE (2021)

Article Multidisciplinary Sciences

Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7

Pengfei Wang et al.

Summary: The COVID-19 pandemic has had global repercussions, with promising vaccines and monoclonal antibody therapies. However, newly detected variants of SARS-CoV-2 present challenges to these treatment options.

NATURE (2021)

Article Multidisciplinary Sciences

mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants

Zijun Wang et al.

Summary: Volunteers who received the Moderna or Pfizer-BioNTech vaccine showed high levels of antibodies and memory B cell responses against SARS-CoV-2, with activity similar to individuals who had recovered from natural infection. However, their efficacy against specific SARS-CoV-2 variants was reduced, indicating a potential need for periodic updates to mRNA vaccines to maintain clinical efficacy.

NATURE (2021)

Article Biochemistry & Molecular Biology

SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma

Constantinos Kurt Wibmer et al.

Summary: The SARS-CoV-2 virus in the B.1.351 variant discovered in South Africa can evade neutralization by most antibodies when expressed, but does not affect binding by convalescent plasma. This suggests the potential for reinfection with antigenically distinct variants and predicts reduced efficacy of spike-based vaccines.

NATURE MEDICINE (2021)

Article Multidisciplinary Sciences

Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England

Nicholas G. Davies et al.

Summary: A new variant of SARS-CoV-2 has emerged in England, with a higher reproduction number and potential for large resurgences of COVID-19 cases. Without stringent control measures, it is projected that COVID-19 hospitalizations and deaths in England for the first 6 months of 2021 will exceed those in 2020. The variant has spread globally and exhibited similar transmission increases in Denmark, Switzerland, and the United States.

SCIENCE (2021)

Article Multidisciplinary Sciences

Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma

Sandile Cele et al.

Summary: The study compared the neutralization of non-VOC and 501Y.V2 VOC variants using plasma from COVID-19 patients in South Africa. It found that plasma from individuals infected during the first wave effectively neutralized the first-wave virus variant, while plasma from those infected in the second wave effectively neutralized the 501Y.V2 variant.

NATURE (2021)

Article Multidisciplinary Sciences

Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice

Phillip Pymm et al.

Summary: Neutralizing antibodies, particularly nanobodies, play a crucial role in immunity against SARS-CoV-2 and in the development of therapeutics for COVID-19. Researchers have identified high-affinity nanobodies that effectively disrupt the interaction between the virus and the human host cell receptor ACE2, offering promising prophylactic potential against SARS-CoV-2. Studies have shown that nanobody-Fc fusions can block viral engagement with host cells and significantly reduce viral loads in infected mice, suggesting their use as preventive agents against COVID-19.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2021)

Article Multidisciplinary Sciences

Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants

Jianliang Xu et al.

Summary: The study found that camelid nanobodies can effectively circumvent vaccine escape caused by mutations in the novel coronavirus. These nanobodies are able to neutralize SARS-CoV-2 variants through two mechanisms, demonstrating promising potential in preventing COVID-19 mortality when vaccines are compromised.

NATURE (2021)

Article Multidisciplinary Sciences

Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies

Allison J. Greaney et al.

Summary: The study found that although the human immune system can produce antibodies that target diverse RBD epitopes, in practice, the polyclonal response to infection tends to be skewed towards a single class of antibodies targeting an epitope that is already undergoing rapid evolution.

NATURE COMMUNICATIONS (2021)

Article Multidisciplinary Sciences

Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2

Renhong Yan et al.

SCIENCE (2020)

Article Biochemistry & Molecular Biology

Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2

Qihui Wang et al.

Article Multidisciplinary Sciences

Convergent antibody responses to SARS-CoV-2 in convalescent individuals

Davide F. Robbiani et al.

NATURE (2020)

Article Multidisciplinary Sciences

Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike

Lihong Liu et al.

NATURE (2020)

Article Biochemistry & Molecular Biology

Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2

Jiangdong Huo et al.

NATURE STRUCTURAL & MOLECULAR BIOLOGY (2020)

Article Multidisciplinary Sciences

Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail

Johanna Hansen et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Distinct conformational states of SARS-CoV-2 spike protein

Yongfei Cai et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability

Philip J. M. Brouwer et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Broad neutralization of SARS-related viruses by human monoclonal antibodies

Anna Z. Wec et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Structures and distributions of SARS-CoV-2 spike proteins on intact virions

Zunlong Ke et al.

NATURE (2020)

Article Multidisciplinary Sciences

An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike

Michael Schoof et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2

Yufei Xiang et al.

SCIENCE (2020)

Article Nuclear Science & Technology

The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility

Wei-Zhe Zhang et al.

NUCLEAR SCIENCE AND TECHNIQUES (2019)

Review Biochemistry & Molecular Biology

Nanobodies: Natural Single-Domain Antibodies

Serge Muyldermans

ANNUAL REVIEW OF BIOCHEMISTRY, VOL 82 (2013)

Article Biochemical Research Methods

MolProbity: all-atom structure validation for macromolecular crystallography

Vincent B. Chen et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2010)

Article Biochemical Research Methods

Coot:: model-building tools for molecular graphics

P Emsley et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2004)

Article Biochemical Research Methods

PHENIX:: building new software for automated crystallographic structure determination

PD Adams et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2002)