4.3 Article

Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes

Journal

JOURNAL OF APPLIED REMOTE SENSING
Volume 10, Issue -, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JRS.10.036023

Keywords

image dodging; two-dimensional radiometric spatial attributes; image mosaic; unmanned aerial vehicles

Funding

  1. National Natural Science Foundation of China [41471354]

Ask authors/readers for more resources

Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in recent years. The poor stability of theUAVplatform, however, produces more inconsistencies in hue and illumination among UAV images than other more stable platforms. Image dodging is a process used to reduce these inconsistencies caused by different imaging conditions. We propose an algorithm for automatic image dodging of UAV images using two-dimensional radiometric spatial attributes. We use object-level image smoothing to smooth foreground objects in images and acquire an overall reference background image by relative radiometric correction. We apply the Contourlet transform to separate high- and low-frequency sections for every single image, and replace the low-frequency section with the low-frequency section extracted from the corresponding region in the overall reference background image. We apply the inverse Contourlet transform to reconstruct the final dodged images. In this process, a single image must be split into reasonable block sizes with overlaps due to large pixel size. Experimental mosaic results show that our proposed method reduces the uneven distribution of hue and illumination. Moreover, it effectively eliminates dark- bright interstrip effects caused by shadows and vignetting in UAV images while maximally protecting image texture information. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available