4.7 Article

Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: A meta-analysis

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 166, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2022.108578

Keywords

Arbuscular mycorrhiza; Ectomycorrhiza; Mineral-associated organic matter; Particulate organic matter; Soil carbon storage; Soil C; N ratio

Categories

Ask authors/readers for more resources

Understanding the impact of mycorrhizal fungi on soil organic matter (SOM) storage and stability is crucial. This study found that ecosystems dominated by ectomycorrhizal (EcM) fungi have higher soil carbon (C) storage and C: N ratio compared to ecosystems dominated by arbuscular mycorrhizal (AM) fungi. The study also suggests that most C in EcM ecosystems is distributed in the relative labile particulate organic matter fraction (POM), making SOM in these ecosystems more vulnerable to disturbances caused by land use and climate changes.
Understanding what controls the soil organic matter (SOM) storage and its stability is important to predict how SOM will respond to environmental changes. The role of mycorrhizal fungi in mediating soil carbon (C) and nitrogen (N) cycling is increasingly recognized. However, how mycorrhizal fungi could affect C distribution and N demand of different soil fractions is largely unknown. Here, we compiled a global dataset of C and N concentrations in different SOM fractions from arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) dominated ecosystems, covering major biomes, including tropical forest, temperate forest, boreal forest, and grassland. Based on this dataset, we evaluated the effect of mycorrhiza symbiosis on C storage and C: N stoichiometry of SOM fractions with different stability. We found that for both topsoil and subsoil, bulk soil C storage and C: N ratio in EcM ecosystems were higher than those in AM ecosystems, and a similar pattern was also observed in the particulate organic matter fraction (POM). However, the C storage in the mineral-associated organic matter fraction (MAOM) was not different between AM and EcM ecosystems. Moreover, with the increase in bulk soil C concentration, the C storage in topsoil MAOM reached a stable level in EcM ecosystems but continued to increase in AM ecosystems. With the increase in soil N concentration, bulk soil C storage of EcM ecosystems increased more rapidly than that of AM ecosystems, which was mainly driven by the increase in POM C storage. Our study highlights that soil C storage and relative stability are different between AM and EcM ecosystems. Although EcM ecosystems have a higher soil C storage and lower N demand per unit soil C, most C is distributed in relative labile POM. Therefore, SOM in EcM ecosystems could be more susceptible to disturbances caused by land use and climate changes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available