4.8 Article

Urea-Mediated Monoliths Made of Nitrogen-Enriched Mesoporous Carbon Nanosheets for High-Performance Aqueous Zinc Ion Hybrid Capacitors

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Revisiting Charge Storage Mechanism of Reduced Graphene Oxide in Zinc Ion Hybrid Capacitor beyond the Contribution of Oxygen-Containing Groups

Hai Xu et al.

Summary: This study focuses on optimizing the charge storage capability and electrochemical kinetics of reduced graphene oxide (rGO) nanosheets. It reveals the additional contribution of reversible adsorption/desorption of H+ on the carbon atom of rGO sheets. The findings provide insights into proton adsorption chemistry and offer guidance for the design of novel electrode materials.

ADVANCED FUNCTIONAL MATERIALS (2022)

Review Chemistry, Multidisciplinary

High-Voltage Zinc-Ion Batteries: Design Strategies and Challenges

Jianping Yan et al.

Summary: This review discusses the design strategies and challenges of high-voltage rechargeable zinc-ion batteries (ZIBs), introduces recent advances in high-voltage cathode materials, and explores strategies to increase cathode operating voltage and factors influencing voltage in redox reactions.

ADVANCED FUNCTIONAL MATERIALS (2021)

Review Chemistry, Physical

Recent Developments and Future Prospects for Zinc-Ion Hybrid Capacitors: a Review

Heng Tang et al.

Summary: This critical review comprehensively summarizes the fundamentals and recent advances of zinc-ion hybrid capacitors (ZICs), including their compositions, energy storage mechanisms, advantages and disadvantages, as well as future research directions. It is expected to provide guidance for the design and exploitation of high-performance ZICs for potential practical applications.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Applied

Recent advances in energy storage mechanism of aqueous zinc-ion batteries

Duo Chen et al.

Summary: Aqueous rechargeable zinc-ion batteries have been receiving increasing research interest due to their safety, cost competitiveness, and capacity advantages compared to lithium ion batteries. However, the disputed energy storage mechanism has been a hindrance to their development. This review provides a detailed summary of the energy storage mechanisms of ZIBs and proposes promising research directions.

JOURNAL OF ENERGY CHEMISTRY (2021)

Article Chemistry, Applied

Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc ion hybrid capacitors with remarkable rate capability

Yao Li et al.

Summary: The study successfully synthesized nitrogen-enriched porous carbon for high-capacity and safe ZIHCs, achieving high capacity and cycle performance. Additionally, the developed quasi-solid-state ZIHCs exhibit high energy density and mechanical flexibility.

JOURNAL OF ENERGY CHEMISTRY (2021)

Article Engineering, Environmental

Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors

Gaobo Lou et al.

Summary: A N, O co-doped two-dimensional carbon nanosheet material is successfully fabricated via one-step combustion conversion of wood for excellent cathode material in zinc ion hybrid supercapacitors. The resulting material shows a uniform structure, high specific surface area, and outstanding electrochemical performance, leading to superior specific capacity, high rate capability, and attractive energy density in ZHS.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

Manipulating Crystallographic Orientation of Zinc Deposition for Dendrite-free Zinc Ion Batteries

Jin Cao et al.

Summary: A functional separator composed of cellulose nanofibers and graphene oxide is developed for dendrite-free and stable zinc ion batteries. This separator promotes uniform zinc deposition and significantly enhances the performance of zinc anodes in various types of batteries.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Physical

Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives

Haiyan Wang et al.

Summary: The newly-emerging Zn-ion hybrid supercapacitors (ZHSCs) integrate the high-capacity of Zn-ion batteries and high-power of supercapacitors (SCs), facing challenges in achieving satisfactory energy density and developing suitable cathode materials and electrolytes. This review comprehensively discusses the fundamentals of ZHSCs, advanced engineering of nanostructured cathode materials, electrochemical characteristics, and energy storage mechanisms, as well as the recent development of electrolytes and Zn anode.

NANO ENERGY (2021)

Article Chemistry, Multidisciplinary

Ionic Polyimide Derived Porous Carbon Nanosheets as High-Efficiency Oxygen Reduction Catalysts for Zn-Air Batteries

Kejun Tu et al.

CHEMISTRY-A EUROPEAN JOURNAL (2020)

Article Chemistry, Multidisciplinary

A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode

Canbin Deng et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Engineering, Environmental

Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material

Yiwei Zheng et al.

CHEMICAL ENGINEERING JOURNAL (2020)

Article Chemistry, Multidisciplinary

A High-Potential Anion-Insertion Carbon Cathode for Aqueous Zinc Dual-Ion Battery

Qiubo Guo et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Nanoscience & Nanotechnology

Rapid Gas-Engineering to the Manufacture of Graphene-Like Mesoporous Carbon Nanosheets with a Large Aspect Ratio

Mingqi Chen et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Physical

Progress on zinc ion hybrid supercapacitors: Insights and challenges

Zhiwei Li et al.

ENERGY STORAGE MATERIALS (2020)

Article Chemistry, Physical

Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage

Yamin Zhang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Review Chemistry, Multidisciplinary

Dendrites in Zn-Based Batteries

Qi Yang et al.

ADVANCED MATERIALS (2020)

Review Chemistry, Physical

Scientific Challenges for the Implementation of Zn-Ion Batteries

Lauren E. Blanc et al.

JOULE (2020)

Article Chemistry, Physical

Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage

Penggao Liu et al.

ENERGY STORAGE MATERIALS (2020)

Article Chemistry, Multidisciplinary

Boosting Zn-Ion Energy Storage Capability of Hierarchically Porous Carbon by Promoting Chemical Adsorption

Haozhe Zhang et al.

ADVANCED MATERIALS (2019)

Article Nanoscience & Nanotechnology

MXene-Reduced Graphene Oxide Aerogel for Aqueous Zinc-Ion Hybrid Supercapacitor with Ultralong Cycle Life

Qiang Wang et al.

ADVANCED ELECTRONIC MATERIALS (2019)

Article Chemistry, Multidisciplinary

Zn-Ion Hybrid Micro-Supercapacitors with Ultrahigh Areal Energy Density and Long-Term Durability

Panpan Zhang et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Physical

Perylenetetracarboxylic diimide as a high-rate anode for potassium-ion batteries

Yunfei Bai et al.

JOURNAL OF MATERIALS CHEMISTRY A (2019)

Article Chemistry, Physical

A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres

Shengmei Chen et al.

JOURNAL OF MATERIALS CHEMISTRY A (2019)

Article Engineering, Environmental

Cooking carbon with protic salt: Nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors

Ling Miao et al.

CHEMICAL ENGINEERING JOURNAL (2018)

Article Nanoscience & Nanotechnology

Gelatin Hydrogel-Based Organic Electrochemical Transistors and Their Integrated Logic Circuits

Young Jin Jo et al.

ACS APPLIED MATERIALS & INTERFACES (2018)

Article Chemistry, Physical

A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications

Heng Wang et al.

ENERGY STORAGE MATERIALS (2018)

Article Chemistry, Physical

Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors

Liubing Dong et al.

ENERGY STORAGE MATERIALS (2018)

Article Chemistry, Multidisciplinary

Nitrogen-doped activated carbon for a high energy hybrid supercapacitor

Bing Li et al.

ENERGY & ENVIRONMENTAL SCIENCE (2016)

Article Nanoscience & Nanotechnology

Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors

Young Soo Yun et al.

ACS APPLIED MATERIALS & INTERFACES (2015)

Article Chemistry, Physical

On the Origin of the Enhanced Supercapacitor Performance of Nitrogen-Doped Graphene

Eunsu Paek et al.

JOURNAL OF PHYSICAL CHEMISTRY C (2013)