4.8 Article

Graphene Quantum Dots Pinned on Nanosheets-Assembled NiCo-LDH Hollow Micro-Tunnels: Toward High-Performance Pouch-Type Supercapacitor via the Regulated Electron Localization

Journal

SMALL
Volume 18, Issue 20, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202201286

Keywords

electron localization; graphene quantum dots; hollow micro-tunnels; nickel-cobalt-layered double hydroxides; pouch-type supercapacitors

Funding

  1. National Natural Science Foundation of China [21673086]

Ask authors/readers for more resources

A combined delicate micro-/nano-architecture and surface modification can tailor the physicochemical properties for an advanced supercapacitor electrode material. The study reports a nickel-cobalt-layered double hydroxide hollow micro-tunnel coupled with graphene quantum dots, which enhances electrode performance through improved electrolyte accessibility and rapid ion/electron transfer.
A combined delicate micro-/nano-architecture and corresponding surface modification at the nanometer level can co-tailor the physicochemical properties to realize an advanced supercapacitor electrode material. Herein, nanosheets-assembled nickel-cobalt-layered double hydroxide (NiCo-LDH) hollow micro-tunnels strongly coupled with higher-Fermi-level graphene quantum dots (GQDs) are reported. The unique hollow structure endows the electrolyte accessible to more electroactive sites, while 2D nanosheets have excellent surface chemistry, which favors rapid ion/electron transfer, synergistically resulting in more super-capacitive activities. The experimental and density functional theory calculations recognize that such a precise decoration generally tunes the charge density distribution at the near-surface due to the Fermi-level difference of two components, thus regulating the electron localization, while decorating with conductive GQDs co-improves the charge mobility, affording superior capacitive response and electrode integrity. The as-acquired GQDs@LDH-2 electrode yields excellent capacitance reaching approximate to 1628 F g(-1) at 1 A g(-1) and durable cycling longevity (86.2% capacitive retention after 8000 cycles). When coupled with reduced graphene oxide-based negative electrode, the hybrid device unveils an impressive energy/power density (46 Wh kg(-1)/ 7440 W kg(-1)); moreover, a flexible pouch-type supercapacitor can be constructed based on this hybrid system, which holds high mechanical properties and stable energy and power output at various situations, showcasing superb application prospects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available