4.6 Article

ABS/HIPS blends obtained from WEEE: Influence of processing conditions and composition

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 133, Issue 34, Pages -

Publisher

WILEY-BLACKWELL
DOI: 10.1002/app.43831

Keywords

blends; mechanical properties; recycling

Funding

  1. Centro Universitario da FEI

Ask authors/readers for more resources

The recycling of acrylonitrile-butadiene-styrene (ABS) and high-impact polystyrene (HIPS) from postconsumer electronic equipment housing was investigated. A preliminary study of shot size and particle size effects on the mechanical properties of ABS/HIPS (50/50) blends obtained directly via injection molding was conducted. Injection-molded specimens of ABS/HIPS blends, obtained at different compositions with or without previous extrusion, were subjected to mechanical, thermal, and morphological testing. Preliminary studies showed that a smaller particle size resulted in higher tensile and impact strength, regardless of the shot size used during injection molding. ABS/HIPS blends obtained using previous extrusion presented a slight increase in Young's modulus and a decrease in elongation at break and impact strength. The increase in glass-transition temperature related to the Polybutadiene (PB) phases of these blends indicated a possible increase in crosslinking structures during extrusion. In addition, these blends showed a coarse and heterogeneous morphology, suggesting that ABS did not completely mix with HIPS. Compared to processing conditions, the blend composition appeared to have a much stronger effect on the mechanical properties. The results obtained suggest the possibility of obtaining ABS/HIPS blends directly via injection molding as long as small ground particles are used. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43831.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available