4.7 Article

Application of neural network based regression model to gas concentration analysis of TiO2 nanotube-type gas sensors

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 361, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2022.131732

Keywords

Gas sensor; Concentration analysis; Machine learning; Neural networks; Titanium oxide nanotube

Funding

  1. Japan Science and Technology Agency (JST) [VP30318088695]

Ask authors/readers for more resources

In this study, gas analysis of TiO2 nanotube (NT)-type integrated gas sensors was performed using a machine learning (ML) algorithm and neural network-based regression. It was found that increasing the number of sensor elements significantly improved the prediction accuracy of gas concentration.
We performed a gas analysis of TiO2 nanotube (NT)-type integrated gas sensors using a machine learning (ML) algorithm and neural network-based regression. We fabricated a TiO2-NT integrated gas sensor with multiple sensing elements with different response characteristics, and we measured the output signals of each sensing element exposed to a gas mixture, where the main components were nitrogen and oxygen gas with a small amount of carbon monoxide. We analyzed the output signals of the sensor elements using the ML technique to predict the concentrations of CO and O2, to which the TiO2-NT gas sensors were sensitive. Sensor output data were collected for seven sets of mixed gas concentrations with different concentrations of each component gas. Four or five of the seven datasets were used as ML training data for the neural network method, and the concentrations of CO and O2 in the remaining three or two datasets were predicted. Consequently, we confirmed that increasing the number of sensor elements significantly improved the prediction accuracy of the gas concentration. When the output signals from 10 sensor elements were used, the gas concentration could be predicted with an accuracy of less than 0.001% for a carbon monoxide concentration of 0.02%. This accuracy was sufficient for practical application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available