4.6 Review

A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants

Journal

SENSORS
Volume 22, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/s22082990

Keywords

energy harvesting; RF powered wireless networks; RF-harvesting techniques; energy propagation models; RF circuit design; MAC protocols for RF power harvesting

Funding

  1. European Regional Development Fund (ERDF) under Ireland's European Structural and Investment Funds Programmes
  2. Science Foundation Ireland (SFI)
  3. Johnson and Johnson [16/RC/3918]
  4. ERDF

Ask authors/readers for more resources

There has been a surge in research on Internet of Things (IoT) devices, covering a wide range of applications in various domains. These battery-powered devices are expected to last for extended periods and energy harvesting technologies have been introduced to mitigate energy issues. Radio Frequency (RF) energy harvesting is a promising approach, utilizing ambient and dedicated radio waves to collect energy. However, there is a lack of consolidated domain knowledge and unreported research challenges in RF power harvesting systems. This article provides an overview of RF power harvesting techniques, surveys the literature on factors affecting performance, and highlights the limitations and future directions in RF powered networks.
There has been an explosion in research focused on Internet of Things (IoT) devices in recent years, with a broad range of use cases in different domains ranging from industrial automation to business analytics. Being battery-powered, these small devices are expected to last for extended periods (i.e., in some instances up to tens of years) to ensure network longevity and data streams with the required temporal and spatial granularity. It becomes even more critical when IoT devices are installed within a harsh environment where battery replacement/charging is both costly and labour intensive. Recent developments in the energy harvesting paradigm have significantly contributed towards mitigating this critical energy issue by incorporating the renewable energy potentially available within any environment in which a sensor network is deployed. Radio Frequency (RF) energy harvesting is one of the promising approaches being investigated in the research community to address this challenge, conducted by harvesting energy from the incident radio waves from both ambient and dedicated radio sources. A limited number of studies are available covering the state of the art related to specific research topics in this space, but there is a gap in the consolidation of domain knowledge associated with the factors influencing the performance of RF power harvesting systems. Moreover, a number of topics and research challenges affecting the performance of RF harvesting systems are still unreported, which deserve special attention. To this end, this article starts by providing an overview of the different application domains of RF power harvesting outlining their performance requirements and summarizing the RF power harvesting techniques with their associated power densities. It then comprehensively surveys the available literature on the horizons that affect the performance of RF energy harvesting, taking into account the evaluation metrics, power propagation models, rectenna architectures, and MAC protocols for RF energy harvesting. Finally, it summarizes the available literature associated with RF powered networks and highlights the limitations, challenges, and future research directions by synthesizing the research efforts in the field of RF energy harvesting to progress research in this area.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available