4.6 Article

The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer

Journal

CANCER GENE THERAPY
Volume 22, Issue 6, Pages 326-334

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cgt.2015.21

Keywords

-

Funding

  1. National Cancer Institute [T32CA113263]
  2. UPCI Animal Research Facility [P30CA047904]

Ask authors/readers for more resources

Neutrophil extracellular traps (NETs) are formed when neutrophils expel their DNA, histones and intracellular proteins into the extracellular space or circulation. NET formation is dependent on autophagy and is mediated by citrullination of histones to allow for the unwinding and subsequent expulsion of DNA. NETs have an important role in the pathogenesis of several sterile inflammatory diseases, including malignancy, therefore we investigated the role of NETs in the setting of pancreatic ductal adenocarcinoma (PDA). Neutrophils isolated from two distinct animal models of PDA had an increased propensity to form NETs following stimulation with platelet activating factor (PAF). Serum DNA, a marker of circulating NET formation, was elevated in tumor bearing animals as well as in patients with PDA. Citrullinated histone H3 expression, a marker of NET formation, was observed in pancreatic tumors obtained from murine models and patients with PDA. Inhibition of autophagy with chloroquine or genetic ablation of receptor for advanced glycation end products (RAGE) resulted in decreased propensity for NET formation, decreased serum DNA and decreased citrullinated histone H3 expression in the pancreatic tumor microenvironment. We conclude that NETs are upregulated in pancreatic cancer through RAGE-dependent/autophagy mediated pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available