4.7 Article

Synchrotron X-ray study of electromigration, whisker growth, and residual strain evolution in a Sn Blech structure

Journal

SCRIPTA MATERIALIA
Volume 214, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.scriptamat.2022.114682

Keywords

Synchrotron radiation; Nano X-ray fluorescence; Electromigration; Sn whiskers; Laue diffraction

Funding

  1. Ministry of Science and Technology, Taiwan [110-2634-F-002-043, 110-2221-E-155-015-MY2, 110-2622-E-155-008]
  2. Ministry of Education, Taiwan [110L9006]

Ask authors/readers for more resources

The study found a noticeable compressive deviatoric stress at the anode of Sn strips, particularly in the roots of Sn whiskers, confirming that electromigration-induced atomic accumulation occurred downstream in a strip and that Sn whiskering was closely related to internal stress resulting from atomic accumulation in confined segments.
Synchrotron X-ray analysis of the Sn electromigration behavior and Sn whisker growth in a Blech structure using nano-X-ray fluorescence microscopy and white beam Laue nanodiffraction was conducted. Sn depletion at the cathode and whisker/extrusion formation at the anode were characterized in-situ, and the results obeyed the electromigration kinetics. This electromigration scenario gradually decayed because of the counterbalance between electron wind force and back stress. White beam Laue nanodiffraction analysis showed that a noticeable compressive deviatoric stress in the direction of electron flow built up at the anode of Sn strips, particularly in the roots of Sn whiskers, confirming that electromigration-induced atomic accumulation occurred downstream in a strip and that Sn whiskering was closely related to internal stress resulting from atomic accumulation in confined segments. Finally, a theoretical model based on fundamental electromigration theory revealed that Sn diffused predominately through lattice and grain boundary paths at Sn homologous temperature of 0.6.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available