4.8 Article

The rapid replacement of the SARS-CoV-2 Delta variant by Omicron (B.1.1.529) in England

Journal

SCIENCE TRANSLATIONAL MEDICINE
Volume 14, Issue 652, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scitranslmed.abo5395

Keywords

-

Funding

  1. UKHSA

Ask authors/readers for more resources

The rapid spread of the Omicron variant in Southern Africa has caused international concern. This study used statistical models to observe the replacement of the Delta variant by Omicron in England. The results show that although the spread of Omicron slowed down, it almost entirely replaced Delta within a month.
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant caused international concern due to its rapid spread in Southern Africa. It was unknown whether this variant would replace or coexist with (either transiently or long term) the then-dominant Delta variant on its introduction to England. We developed a set of hierarchical logistic growth models to describe changes in the frequency of S gene target failure (SGTF) PCR tests, a proxy for Omicron. The doubling time of SGTF cases peaked at 1.56 days (95% CI: 1.49 to 1.63) on 5 December, whereas triple-positive cases were halving every 5.82 days (95% CI: 5.11 to 6.67) going into Christmas 2021. We were unable to characterize the replacement of Delta by Omicron with a single rate. The replacement rate decreased by 53.56% (95% CrI: 45.38 to 61.01) between 14 and 15 December, meaning the competitive advantage of Omicron approximately halved. Preceding the changepoint, Omicron was replacing Delta 16.24% (95% CrI: 9.72 to 23.41) faster in those with two or more vaccine doses, indicative of vaccine escape being a substantial component of competitive advantage. Despite the slowdown, Delta was almost entirely replaced in England within a month of the first sequenced domestic case. The synchrony of changepoints across regions at various stages of Omicron epidemics suggests that the growth rate advantage was not attenuated because of biological mechanisms related to strain competition. The step change in replacement could have resulted from behavioral changes, potentially elicited by public health messaging or policies, that differentially affected Omicron.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available