4.7 Article

Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 823, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.153700

Keywords

Plant cell; Proteomics; Radionuclide transport; Heavy metal interaction; Vesicle uptake

Funding

  1. German Federal Ministry of Education and Research (BMBF) [03SF0451]
  2. BMBF [02NUK051B]

Ask authors/readers for more resources

Endocytosis of metals in plants, particularly uranium, is an important process for metal uptake and sequestration. This study investigated the endocytic uptake of uranium in tobacco BY-2 cells, revealing that endocytosis plays a significant role in uranium uptake and targeting to vacuoles. The findings indicate that endocytosis provides a safer route for uranium sequestration in plants.
Endocytosis of metals in plants is a growing field of study involving metal uptake from the rhizosphere. Uranium, which is naturally and artificially released into the rhizosphere, is known to be taken up by certain species of plant, such as Nicotiana tabacum, and we hypothesize that endocytosis contributes to the uptake of uranium in tobacco. The endocytic uptake of uranium was investigated in tobacco BY-2 cells using an optimized setup of culture in phosphate-deficient medium. A combination of methods in biochemistry, microscopy and spectroscopy, supplemented by proteomics, were used to study the interaction of uranium and the plant cell. We found that under environmentally relevant uranium concentrations, endocytosis remained active and contributed to 14% of the total uranium bioassociation. Proteomics analyses revealed that uranium induced a change in expression of the clathrin heavy chain variant, signifying a shift in the type of endocytosis taking place. However, the rate of endocytosis remained largely unaltered. Electron microscopy and energy-dispersive X-ray spectroscopy showed an adsorption of uranium to cell surfaces and deposition in vacuoles. Our results demonstrate that endocytosis constitutes a considerable proportion of uranium uptake in BY-2 cells, and that endocytosed uranium is likely targeted to the vacuole for sequestration, providing a physiologically safer route for the plant than uranium transported through the cytosol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available