4.7 Article

Oxygen gradients shape the unique structure of picoeukaryotic communities in the Bay of Bengal

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 814, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.152862

Keywords

Picoeukaryote; Assembly mechanisms; Functional composition; Oxygen minimum zone; Bay of Bengal

Funding

  1. National Natural Science Foundation of China [41876134]
  2. Changjiang Scholar Program of Chinese Ministry of Education [T2014253]
  3. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences [GKZ21Y645, NORC2020-10]
  4. NSFC Ship time Sharing Project [41949910]

Ask authors/readers for more resources

Picoeukaryotic communities respond rapidly to global climate change and play a crucial role in marine ecosystems. This study investigated the assembly mechanisms of picoeukaryotic communities in deep-sea and low-oxygen environments of the Bay of Bengal. The results indicate that deterministic and stochastic processes both shape the community structure, and environmental factors such as temperature, salinity, and nutrients influence the composition of these communities.
Picoeukaryotic communities respond rapidly to global climate change and play an important role in marine biological food webs and ecosystems. The formation of oxygen minimum zones (OMZ) is facilitated by the stratification of seawater and higher primary production in the surface layer, and the marine picoeukaryotic community this low-oxygen environment is topic of interest. To better understand the picoeukaryotic community assembly mechanisms in an OMZ, we collected samples from the Bay of Bengal (BOB) in October and November 2020 and used 18S rDNA to study the picoeukaryotic communities and their community assembly mechanisms that they are controlled by in deep-sea and hypoxic zones. The results show that deterministic and stochastic processes combine to shape picoeukaryotic communities in the BOB. We divided the water column into three vertical layers: the upper oxycline (UO), the OMZ, and the lower oxycline (LO), based on dissolved oxygen concentrations (dissolved oxygen: UO > LO > OMZ) at vertical depths (from 5 m to 2000 m). Deterministic processes controlled the picoeukaryotic community in the UO, while the picoeukaryotic communities in the OMZ and LO were dominated by stochastic processes. The OMZ had a stronger diffusional limitation and the habitat niche breadth in the UO was wider than that in OMZ and LO. We classified the picoeukaryotic community into three functional composition types (phototrophic, mixotrophic, and heterotrophic); heterotrophs were most abundant in the surveyed area, and the proportion of decreased significantly with increasing depth and decreasing dissolved oxygen. The picoeukaryotes in the investigated area also correlated with temperature, salinity, and nutrients (phosphate, silicate, nitrate, nitrite, and ammonium). These findings contribute to a better understanding of picoeukaryotic communities in deep-sea and low-oxygen environments, their functional structuring, as well as the effects of environmental changes on their community structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available