4.7 Article

Compound effect of land reclamation and land-based pollutant input on water quality in Qinzhou Bay, China

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 826, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.154183

Keywords

Land reclamation; Land -based pollutant input; Human activities; Water quality; Hydro-biogeochemical model; Compound effect

Funding

  1. Guangxi Key Research and Development Program [Guike AB1850023]
  2. National Natural Science Foundation of China [41806132]
  3. Fundamental Research Funds for the Central Universities of China [202042008]

Ask authors/readers for more resources

Based on a hydro-biogeochemical model, this study investigated the compound and individual impacts of land reclamation and land-based pollutant input on coastal water quality. The results showed that land reclamation led to the continuous deterioration of water quality, while hindering the improvement induced by reduced pollutant input. Restoring hydrodynamics was found to be a more effective ecological restoration method compared to solely reducing the pollutant input.
Based on a three-dimensional hydro-biogeochemical model, the compound and individual impacts of two types of human activities, i.e., land reclamation and land-based pollutant input, on coastal water quality were studied. In Qinzhou Bay (QZB), China, a total of 38.90 km2 of tidal flat was reclaimed between 2004 and 2019, and the Chemical Oxygen Demand (COD) in the wastewater was reduced by over 40%. However, the Dissolved Inorganic Nitrogen (DIN) was increased by above 40%, and the Dissolved Inorganic Phosphorus (DIP) was increased by about 17%, leading to the continuous deterioration of water quality in QZB. Correspondingly, the model results show that the bay's average COD decreased by 6.86%, but the DIN and DIP increased by 57.53% and 17.39%, respectively. Considering the individual effects, land reclamation contributed 72.73%, 75.38%, and 25.01% to the changes in the COD, DIN, and DIP concentrations in QZB, respectively; and the remainder was caused by the variations in the land-based pollutant input. By considering the compound effect of these two types of human activities, it was found that land reclamation can hinder the water quality improvement induced by the decrease in land-based pollutant input; and it can intensify the water quality deterioration induced by the increase in land-based pollutant input. These results indicate that the impact of land-based pollutant input on coastal water quality was modulated by land reclamation. However, the modulation did not affect the DIP since the phosphorus was the restrictive element in QZB. The comparison of different experimental results revealed that restoring hydrodynamics to enhance the bay-shelf exchange would be a more effective method of ecological restoration than solely reducing the pollutant input.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available