4.7 Article

Pre-magnetic bamboo biochar cross-linked CaMgAl layered double-hydroxide composite: High-efficiency removal of As(III) and Cd(II) from aqueous solutions and insight into the mechanism of simultaneous purification

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 823, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.153743

Keywords

Magnetic biochar; CaMgAl layered double-hydroxide; Simultaneous adsorption; Arsenic(III); Cadmium(II); Interaction mechanism

Funding

  1. National Key Technology Research and Development Program of China [2020YFC1806401]

Ask authors/readers for more resources

The Fe-BC@LDH showed efficient adsorption of As(III) and Cd(II) in water, with maximum adsorption capacities of 265.3 and 320.7 mg/g respectively. The sorbent exhibited a greater preference for Cd(II) in competitive or single system adsorption.
Trivalent arsenic (As(III)) and divalent cadmium (Cd(II)) contamination in water environment is an urgent issue because of their most toxic physicochemical properties. Herein, the simultaneous purification of As(III) and Cd(II) from aqueous solution was achieved by use of a pre-magnetic Fe modified bamboo biochar that cross-linked CaMgAl layered double-hydroxide composite (Fe-BC@LDH). In a binary system, adsorption equilibrium of As(III) and Cd(II) onto specific sorbent Fe-BC@LDH was reached within 100 and 10 min of contact time under anaerobic conditions, respectively, and the maximum adsorption capacities of As(III) and Cd(II) by Fe-BC@LDH were respectively calculated to be similar to 265.3 and similar to 320.7 mg/g at pH 4.5 and 5- and 14-times than that of unmodified biochar. Moreover, adsorption in a competitive or single system, the sorbent displayed a greater preference for Cd(II). Importantly, the removal of As (III) and Cd(II) onto the composite was more favorable in a binary system due to formation of ternary FeOCdAs bonding configuration as well as the redox transformation of As(III) to As(V), inner-sphere complexation of MOAs/Cd (MFe, Ca, Mg, Al), electrostatic attraction, and co-precipitation of scorodite and hydroxy-iron-cadmium. Furthermore, the nanocomposite was still highly efficient after 5 adsorption cycles. This study demonstrated that the synthesized cost-effective Fe-BC@LDH is a promising candidate for the simultaneous separation of As(III) and Cd(II) from wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available