4.7 Review

Application of external carbon source in heterotrophic denitrification of domestic sewage: A review

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 817, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.153061

Keywords

Heterotrophic denitrification; Nitrogen removal; External carbon source; Sewage treatment

Funding

  1. National Key Research and Development Program of China [2019YFD1100200]

Ask authors/readers for more resources

This review summarizes the effects of liquid, solid, and gaseous carbon sources on denitrification, finding that sodium acetate is the preferred external carbon source, biodegradable polymers perform better in solid-phase denitrification but have a higher price, and methane can be used as a gaseous carbon source. Liquid carbon sources are better controlled and utilized, and high carbon to nitrogen ratio, hydraulic retention time, and temperature promote denitrification.
The carbon source is essential as an electron donor in the heterotrophic denitrification process. When there is a lack of organic carbon sources in the system, an external carbon source is needed to improve denitrification efficiency. This review compiles the effects of liquid, solid and gaseous carbon sources on denitrification. Sodium acetate has better denitrification efficiency and is usually the first choice for external carbon sources. Fermentation by-products have been demonstrated to have the same denitrification efficiency as sodium acetate. Compared with cellulose-rich materials, biodegradable polymers have better and more stable denitrification performance in solid-phase nitrification, but their price is higher than the former. Methane as a gaseous carbon source is studied mainly by aerobic methane oxidation coupled with denitrification, which is feasible using methane as a carbon source. Liquid carbon sources are better controlled and utilized than solid carbon sources and gaseous carbon sources. In addition, high carbon to nitrogen ratio and hydraulic retention time can promote denitrification, while high dissolved oxygen (DO>2.0 mg L-1) will inhibit the denitrification process. At the same time, high temperature is conducive to the decomposition of carbon sources by microorganisms. This review also considers the advantages and disadvantages of different carbon sources and cost analysis to provide a reference for looking for more economical and effective external carbon sources in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available