4.6 Article

Optical absorption and small-polaron hopping in oxygen deficient and lithium-ion-intercalated amorphous titanium oxide films

Journal

JOURNAL OF APPLIED PHYSICS
Volume 119, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4939091

Keywords

-

Funding

  1. Swedish Research Council
  2. European Research Council under the European Community [267234]

Ask authors/readers for more resources

Optical absorption in oxygen-deficient and Li+-ion inserted titanium oxide films was studied in the framework of small-polaron hopping. Non-stoichiometric TiOy films with 1.68 <= y <= 2.00 were deposited by reactive DC magnetron sputtering and were subjected to electrochemical intercalation of Li+-ions and charge-balancing electrons to obtain LixTiOy films with 0.12 <= x <= 0.34. Dispersion analysis was applied to calculate the complex dielectric function epsilon((h) over bar omega) =epsilon(1) ((h) over bar omega) + i epsilon(2)((h) over bar omega) from numerical inversion of optical transmittance and reflectance spectra; a superposition of Tauc-Lorentz and Lorentz oscillator models was used for this purpose. Data on epsilon(2)((h) over bar omega) were employed to calculate the optical conductivity and fit this property to a small-polaron model for disordered systems with strong electron-phonon interaction and involving transitions near the Fermi level. The introduction of oxygen vacancies and/or Li+ insertion yielded band gap widening by similar to 0.20-0.35 eV, and both processes induced similar low-energy optical absorption. The small-polaron-based analysis indicated increases in the Fermi level by similar to 0.15-0.3 eV for sub-stoichiometric and/or Li+-inserted films. This suggests the existence of polaronic Ti3+ states in the lower part of the conduction band arising from transfer of electrons from oxygen vacancies and/or inserted Li+ species. The present article is a sequel to an earlier paper on oxygen-deficient and/or Li+-inserted amorphous WOy thin films and forms part of a comprehensive investigation of optical absorption in amorphous transition metal oxides with different valence states of the metallic ions. (C) 2016 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available