4.8 Review

Review of degradation and failure phenomena in photovoltaic modules

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 159, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2022.112160

Keywords

solar Modules; Solar cells; Photovoltaics; Reliability; Degradation; Wear-out; Stress; Climate; Energy payback time

Funding

  1. COST (European Cooperation in Science and Technology) [CA16235 PEARL PV]
  2. COST is a funding agency for research and innovation networks

Ask authors/readers for more resources

This article reviews the latest knowledge on the reliability of PV modules, including reliability metrics, stress factors, degradation, and failure modes. By analyzing the degradation and failure phenomena, strategies can be developed to improve the operational lifetime of PV systems and reduce the cost of electricity.
The degradation of photovoltaic (PV) systems is one of the key factors to address in order to reduce the cost of the electricity produced by increasing the operational lifetime of PV systems. To reduce the degradation, it is imperative to know the degradation and failure phenomena. This review article has been prepared to present an overview of the state-of-the-art knowledge on the reliability of PV modules. Whilst the most common technology today is mono- and multi-crystalline silicon, this article aims to give a generic summary which is relevant for a wider range of photovoltaic technologies including cadmium telluride, copper indium gallium selenide and emerging low-cost high-efficiency technologies. The review consists of three parts: firstly, a brief contextual summary about reliability metrics and how reliability is measured. Secondly, a summary of the main stress factors and how they influence module degradation. Finally, a detailed review of degradation and failure modes, which has been partitioned by the individual component within a PV module. This section connects the degradation phenomena and failure modes to the module component, and its effects on the PV system. Building on this knowledge, strategies to improve the operational lifetime of PV systems and thus, to reduce the electricity cost can be devised. Through extensive testing and failure analysis, researchers now have a much better overview of stressors and their impact on long term stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available