4.8 Article

Time-dependent solar aperture estimation of a building: Comparing grey-box and white-box approaches

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 161, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2022.112337

Keywords

Solar gain; Dynamic solar aperture (gA); Grey-box model; Building energy simulation; Direct normal irradiance; Comparative study

Funding

  1. Research Foundation Flanders (FWO) [G0D2519N]
  2. KU Leuven [C24/18/040]

Ask authors/readers for more resources

This paper proposes a B-splines integrated grey-box model to estimate buildings' dynamic solar gain more efficiently. The method improves upon the constant solar gain factor assumption of existing grey-box models by utilizing customized B-splines to precisely characterize the time-dependence of solar gain. The results show that the proposed method can accurately capture the main trends and key dynamic features of solar gain.
This paper proposes a B-splines integrated method combining in-situ data with grey-box modeling to estimate buildings' dynamic solar gain more efficiently than the conventional white-box model and much more precisely than the classic grey-box model. Solar gain, referring to the overall indoor energy gain supplied by solar radiation, plays a vital role in the indoor energy balance. Estimating dynamic solar gain precisely is essential to building energy optimization, e.g., in model predictive control. However, in almost all existing grey-box modeling works, a constant solar gain factor (solar aperture; gA) is assumed to estimate dynamic solar gain, which almost certainly will result in solar gain prediction errors, especially in buildings with unevenly distributed windows. To fill this gap, this study presents an advanced B-splines integrated grey-box model, using customized B-splines to advance the constant gA assumption toward its nature of time-dependence and precisely characterize the dynamic solar gain conclusively. On-site measured datasets of a portable site office (PSO) representing a 'simplified' building, under two scenarios with windows fully or partially uncovered, serve as test cases. To verify the physical interpretation of outcomes estimated by the proposed method, based on the said test cases, the proposed B-splines integrated grey-box model is compared with a classic white-box simulation. It is concluded that the proposed method can reveal the main trends and key dynamic features of solar gain very well, but still has some limitations of quantifying 'local' details with acceptable variations. Nevertheless, given that the proposed method merely asks for a very limited amount of low-frequency data, the proposed method is considered as a much more effective alternative to the classic white-box simulation approach, which requires massive and often hard-to-collect input data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available