4.8 Article

Model-related outcome differences in power system models with sector coupling-Quantification and drivers

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 159, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2022.112177

Keywords

Power sector modeling; Model comparison; Sector coupling; Optimization

Funding

  1. German Federal Ministry of Economic Affairs and Climate Action [03ET4077A-G]

Ask authors/readers for more resources

This study presents the results of a multi-model comparison to determine outcome deviations resulting from differences in power system models. The findings show that model choice has a robust impact on system operation and investment decisions, while differences in modeling approach and specific technologies lead to comparatively small deviations. The results provide important guidance for modelers and decision-makers in properly evaluating power system model results.
This paper presents the results of a multi-model comparison to determine outcome deviations resulting from differences in power system models. We apply eight temporally and spatially resolved models to 16 stylized test cases. These test cases differ in their renewable energy supply share, technology scope, and optimization scope. We focus on technologies for balancing the variability of power generation, such as controllable power plants, energy storage, power transmission, and flexibility related to sector coupling. We use harmonized input data in all models to separate model-related from data-related outcome deviations. We find that our approach allows for isolating and quantifying model-related outcome deviations and robust effects concerning system operation and investment decisions. Furthermore, we can attribute these deviations to the identified model differences. Our results show that trends in the use of individual flexibility options are robust across most models. Moreover, our analysis reveals that differences in the general modeling approach and the modeling of specific technologies lead to comparatively small deviations. In contrast, a heterogeneous model scope can cause substantially larger deviations. Due to a large number of models and scenarios, our analysis can provide important information on which investment and operation decisions are robust to the model choice, and which modeling approaches have an exceptionally high impact on results. Our findings may guide both modelers and decision-makers in properly evaluating the results of similarly designed power system models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available