4.7 Article

A non-Gaussian stochastic model from limited observations using polynomial chaos and fractional moments

Journal

RELIABILITY ENGINEERING & SYSTEM SAFETY
Volume 221, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ress.2022.108323

Keywords

Non-Gaussian model; Limited observations; Fractional moments; Bootstrapping; Karhunen-Loeve expansion; Polynomial chaos

Funding

  1. National Natural Science Foundation of China [11972009, 11672091]

Ask authors/readers for more resources

This paper presents a method based on polynomial chaos and fractional moments for constructing non-Gaussian random models from limited observations. The method is able to quantify the randomness and uncertainty of the observed non-Gaussian field simultaneously, and facilitates the implementation of polynomial chaos-based stochastic analysis in practical engineering applications.
The reasonable representation of input random fields is the key element in the reliability analysis of practical engineering systems. In most engineering applications, the characterization of a random field often relies on limited measurements. Although the simulation of random fields with complete probabilistic information has been quite well-established, reconstructing a random field from limited observations is still a challenging task. In this paper, we develop a methodology for constructing non-Gaussian random model from limited observations based on polynomial chaos (PC) and fractional moments for real-life problems. Our method begins with the reduce-order representation of measurements by Karhunen-Loeve (KL) expansion, followed by the PC representation of KL coefficients. The PC coefficients are further modeled as random variables, whose distributions are determined by a modified maximum entropy principle with fractional moments (ME-FM) procedure and a ME-FM-based bootstrapping. In this way, the developed non-Gaussian model enables to quantify the inherent randomness and the statistical uncertainty of the observed non-Gaussian field simultaneously. Since the developed non-Gaussian model is embedded into the well-established PC framework, our method facilitates the implementation of PC-based stochastic analysis in practical engineering applications, in which only limited probabilistic measures are available. Two numerical examples demonstrate the application of the developed method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available