4.4 Article

Screening and identifying cucurbitacins and cucurbitacin glycosides in Cucumis sativus using high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry combined with in-source fragmentation and alkali adduct ions

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 36, Issue 14, Pages -

Publisher

WILEY
DOI: 10.1002/rcm.9323

Keywords

-

Funding

  1. Special Funds for Development of Local Science and Technology from Central Government [2021SF5045]

Ask authors/readers for more resources

This study established a rapid detection method to screen cucurbitacins and cucurbitacin glycosides in cucumber plants using HPLC-Q-TOF-MS technology with in-source fragmentation. The addition of alkali cations to the mobile phase improved ion response, allowing for the identification of various metabolites in cucumber plants.
Rationale Cucumber, as a popular fruit and vegetable, has tremendously contributed to providing a sufficient and high-quality food supply. However, the cucumber plant metabolites, which may possess potential benefits for human health, were rarely reported. In addition, rapid detection of these metabolites from the complex biological matrix of cucumber samples is a tremendous challenge. Methods A rapid detection method was established to systematically screen cucurbitacins and cucurbitacin glycosides in cucumber plants by combining high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC-Q-TOF-MS) with in-source fragmentation (ISF). Moreover, the alkali cations, including acetic acid, 0.1% LiCl, 0.1% NH4Cl, 0.1% NaCl, and 0.1% KCl, were added to the mobile phase for improving the ion response. Results The fragmentation pathways of seven cucurbitacins and cucurbitacin glycosides were primarily investigated. The characteristic ISF ions at m/z 501.3211 and 503.3367 were identified and employed to screen 40 cucurbitacins and cucurbitacin glycosides from the complex biological matrix. Their structures were identified by their tandem mass spectrometry (MS/MS) spectra and fragmentation pathways of references. Finally, the metabolic distribution and network of cucurbitacins and cucurbitacin glycosides in cucumber plants were also proposed. Conclusions This work marks the first systematic and comprehensive study of the metabolites in cucumber plants using HPLC-Q-TOF-MS technology, providing a template for screening and identifying the triterpenoids from other plant-derived medicines or food.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available