4.6 Article

A method to experimentally clamp leaf water content to defined values to assess its effects on apoplastic pH

Journal

PLANT METHODS
Volume 18, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13007-022-00905-y

Keywords

Leaf water content; Air humidity; Transpiration; Apoplast; pH; Sensor; Feedback; Fluorescence ratio

Funding

  1. German Research Foundation [INST 257/449-1 FUGG]

Ask authors/readers for more resources

This study presents a method to measure and manipulate leaf hydration by controlling leaf water content. The technique allows precise control of leaf water content and enables the investigation of quantitative relationships between water content and signaling and regulatory processes.
Background Leaf hydration is controlled by feedback mechanisms, e.g. stomatal responses, adjustments of osmotic potential and hydraulic conductivity. Leaf water content thus is an input into related feedback-loops controlling the balance of water uptake and loss. Apoplastic alkalisation upon leaf dehydration is hypothesized to be involved together and in interaction with abscisic acid (ABA) in water stress related signaling on tissue level. However, important questions are still unresolved, e.g. the mechanisms leading to pH changes and the exact nature of its interaction with ABA. When studying these mechanisms and their intermediate signaling steps, an experimenter has only poor means to actually control the central experimental variable, leaf water content (LWC), because it is not only dependent on external variables (e.g. air humidity), which are under experimental control, but is also governed by the biological influences controlling transpiration and water uptake. Those are often unknown in their magnitude, unpredictable and fluctuating throughout an experiment and will prevent true repetitions of an experiment. The goal of the method presented here is to experimentally control and manipulate leaf water content (LWC) of attached intact leaves enclosed in a cuvette while simultaneously measuring physiological parameters like, in this case, apoplastic pH. Results An experimental setup was developed where LWC is measured by a sensor based on IR-transmission and its signal processed to control a pump which circulates air from the cuvette through a cold trap. Hereby a feedback-loop is formed, which by adjusting vapour pressure deficit (VPD) and consequently leaf transpiration can precisely control LWC. This technique is demonstrated here in a combination with microscopic fluorescence imaging of apoplastic pH (pH(apo)) as indicated by the excitation ratio of the pH sensitive dye OregonGreen. Initial results indicate that pH(apo) of the adaxial epidermis of Vicia faba is linearly related to reductions in LWC. Conclusions Using this setup, constant LWC levels, step changes or ramps can be experimentally applied while simultaneously measuring physiological responses. The example experiments demonstrate that bringing LWC under experimental control in this way allows better controlled and more repeatable experiments to probe quantitative relationships between LWC and signaling and regulatory processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available