4.5 Article

From 12 to 1 ECG lead: multiple cardiac condition detection mixing a hybrid machine learning approach with a one-versus-rest classification strategy

Journal

PHYSIOLOGICAL MEASUREMENT
Volume 43, Issue 6, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-6579/ac72f5

Keywords

ECG; signal processing; feature extraction; feature selection; machine learning; classification; cardiac conditions detection

Funding

  1. National Research Program, Ministerio de Ciencia e Innovacion, Spanish Government [PID2019-109547RB-I00]
  2. Instituto de Salud Carlos III [CIBERCV CB16/11/00486]

Ask authors/readers for more resources

This study proposed and validated an automated method for classifying ECG recordings, and evaluated the performance of different lead systems in detecting cardiac diseases.
Objective. Detecting different cardiac diseases using a single or reduced number of leads is still challenging. This work aims to provide and validate an automated method able to classify ECG recordings. Performance using complete 12-lead systems, reduced lead sets, and single-lead ECGs is evaluated and compared. Approach. Seven different databases with 12-lead ECGs were provided during the PhysioNet/Computing in Cardiology Challenge 2021, where 88 253 annotated samples associated with none, one, or several cardiac conditions among 26 different classes were released for training, whereas 42 896 hidden samples were used for testing. After signal preprocessing, 81 features per ECG-lead were extracted, mainly based on heart rate variability, QRST patterns and spectral domain. Next, a One-versus-Rest classification approach made of independent binary classifiers for each cardiac condition was trained. This strategy allowed each ECG to be classified as belonging to none, one or several classes. For each class, a classification model among two binary supervised classifiers and one hybrid unsupervised-supervised classification system was selected. Finally, we performed a 3-fold cross-validation to assess the system's performance. Main results. Our classifiers received scores of 0.39, 0.38, 0.39, 0.38, and 0.37 for the 12, 6, 4, 3 and 2-lead versions of the hidden test set with the Challenge evaluation metric ( CM

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available