4.7 Article

Influence of nano- and micro-roughness on vortex generations of mixing flows in a cavity

Journal

PHYSICS OF FLUIDS
Volume 34, Issue 3, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0083503

Keywords

-

Funding

  1. Russian Science Foundation [21-19-00205]
  2. Russian Science Foundation [21-19-00205] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

Experiments were conducted using a water-filled elongated cup of a kitchen scale with a rotating disk with micro- and nano-roughness. The results showed that certain nanostructures led to significant growth of vortices while other roughnesses did not impact the flow structure. These findings are important for evaluating the efficiency of surfaces with nanoscale roughnesses and have potential applications in enhancing mixing in chemical and bio-reactors.
Experiments were carried out in a water-filled elongated cup of a kitchen scale, where motion was created by a rotating disk with various micro- and nano-roughness in the top of the cup. The obtained results have shown that for some patterns of nanostructures, there is a noticeable growth of a vortex, generated by the disk, while other roughnesses do not make visible changes in the flow structure. The results are of interest in assessing the efficiency of surfaces with nanoscale roughnesses. Indeed, the first type of nano-roughness may become useful for enhancing soft mixing in chemical and bio-reactors, including in the preparation of special food delicacies. On the other hand, the use of nanostructured surfaces that do not affect the main flow can help to solve some industrial problems of water and ice erosion, for example, in wind turbines or any other objects where disturbances of the main flow are undesirable. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available