4.8 Article

SU(4) Symmetry in Twisted Bilayer Graphene: An Itinerant Perspective

Related references

Note: Only part of the references are listed.
Article Multidisciplinary Sciences

Correlation-driven topological phases in magic-angle twisted bilayer graphene

Youngjoon Choi et al.

Summary: Magic-angle twisted bilayer graphene (MATBG) exhibits a variety of correlated phenomena, and new techniques introduced can determine the topological phases that emerge in MATBG in a finite magnetic field. These topological phases form only in a specific range of twist angles and are influenced by strong electronic interactions.

NATURE (2021)

Article Physics, Multidisciplinary

Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene

Yu Saito et al.

Summary: A small twist between two layers of graphene can lead to flat band structures, which can form ferromagnetic Chern insulators when the moire superlattice interacts with a magnetic field. In twisted bilayer graphene, Coulomb interactions and magnetic field effects give rise to new quantum states.

NATURE PHYSICS (2021)

Article Physics, Multidisciplinary

Cascades between Light and Heavy Fermions in the Normal State of Magic-Angle Twisted Bilayer Graphene

Jian Kang et al.

Summary: The research presents a framework for understanding the cascade transitions and Landau level degeneracies of twisted bilayer graphene, which sheds light on new insights. By varying the filling, different mass excitations can be generated, explaining the diversity of features observed.

PHYSICAL REVIEW LETTERS (2021)

Article Physics, Multidisciplinary

Exact Diagonalization for Magic-Angle Twisted Bilayer Graphene

Pawel Potasz et al.

Summary: This study reports on finite-size exact-diagonalization calculations in a Hilbert space defined by the continuum-model flat moire bands of magic angle twisted bilayer graphene, showing evidence of a spin ferromagnet ground state for moire band filling between 3 and 2, and Chern insulator ground states with spontaneous spin, valley, and sublattice polarization near filling 3. It is emphasized that the inclusion of remote band self-energy is crucial for a reliable description of flat band correlations in magic angle twisted bilayer graphene.

PHYSICAL REVIEW LETTERS (2021)

Article Chemistry, Physical

Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene

Shuang Wu et al.

Summary: In magic-angle twisted bilayer graphene, doping-induced Lifshitz transitions and van Hove singularities lead to the emergence of correlation-induced gaps and topologically non-trivial subbands. With the presence of a magnetic field, quantized Hall plateaus reveal the subband topology and signal the emergence of Chern insulators with Chern numbers. Additionally, a van Hove singularity at a filling of 3.5 suggests the possibility of a fractional Chern insulator, accompanied by a crossover from low-temperature metallic to high-temperature insulating behavior.

NATURE MATERIALS (2021)

Article Physics, Multidisciplinary

Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene

Ipsita Das et al.

Summary: The study presents a rich sequence of quantized Hall conductance regions in magic-angle twisted bilayer graphene (MATBG), driven by specific electronic interactions, revealing the complex nature of symmetry breaking in MATBG. Analysis of Landau level crossings provides constraints on the parameters of the MATBG Hamiltonian and allows for quantitative tests of proposed microscopic scenarios for its electronic phases.

NATURE PHYSICS (2021)

Article Multidisciplinary Sciences

Isospin Pomeranchuk effect in twisted bilayer graphene

Yu Saito et al.

Summary: The study explores the finite-temperature dynamics of spin and valley isospins in magic-angle twisted bilayer graphene, revealing a resistivity peak at high temperatures near a superlattice filling factor of -1, suggesting a Pomeranchuk-type mechanism. The data indicate the presence of a finite-field magnetic phase transition and a small isospin stiffness in the system.

NATURE (2021)

Article Materials Science, Multidisciplinary

Twisted bilayer graphene. III. Interacting Hamiltonian and exact symmetries

B. Andrei Bernevig et al.

Summary: We derive the explicit Hamiltonian of twisted bilayer graphene with Coulomb interaction, demonstrating positive semidefinite Hamiltonians when projected into flat bands. It is proved that the interacting TBG Hamiltonian exhibits an exact U(4) symmetry in the flat band limit. The existence of chiral limits with enlarged symmetry suggests a possible undiscovered duality of the model.

PHYSICAL REVIEW B (2021)

Article Materials Science, Multidisciplinary

Twisted bilayer graphene. VI. An exact diagonalization study at nonzero integer filling

Fang Xie et al.

Summary: In this study, the projected Hamiltonian with the Coulomb interaction in the eight flat bands of the first magic angle twisted bilayer graphene is investigated using exact diagonalization. The research shows that under specific conditions, the ground states and excitations can be well-described, and phase transitions exist under the FMC conditions.

PHYSICAL REVIEW B (2021)

Article Materials Science, Multidisciplinary

Topological and nematic superconductivity mediated by ferro-SU(4) fluctuations in twisted bilayer graphene

Yuxuan Wang et al.

Summary: The research introduces an SU(4) spin-valley-fermion model to study superconducting instabilities in twisted bilayer graphene (TBG). This model suggests that bosonic fluctuations associated with an SU(4) symmetry couple to low-energy fermions, promoting attractive pairing interactions in various competing channels in TBG.

PHYSICAL REVIEW B (2021)

Article Physics, Multidisciplinary

Nematic topological semimetal and insulator in magic-angle bilayer graphene at charge neutrality

Shang Liu et al.

Summary: We report a fully self-consistent Hartree-Fock calculation of the interaction effects on the moire flat bands of twisted bilayer graphene, assuming valley U(1) symmetry is respected. Three types of self-consistent solutions were found, including insulators breaking C2T symmetry, spin/valley-polarized insulators, and semimetals breaking rotation C-3 symmetry. The relative stability of these states can be tuned by weak strains that break C-3 rotation.

PHYSICAL REVIEW RESEARCH (2021)

Article Multidisciplinary Sciences

Intrinsic quantized anomalous Hall effect in a moire heterostructure

M. Serlin et al.

SCIENCE (2020)

Article Physics, Multidisciplinary

Independent superconductors and correlated insulators in twisted bilayer graphene

Yu Saito et al.

NATURE PHYSICS (2020)

Article Multidisciplinary Sciences

Superconductivity in metallic twisted bilayer graphene stabilized by WSe2

Harpreet Singh Arora et al.

NATURE (2020)

Article Multidisciplinary Sciences

Cascade of electronic transitions in magic-angle twisted bilayer graphene

Dillon Wong et al.

NATURE (2020)

Article Multidisciplinary Sciences

Untying the insulating and superconducting orders in magic-angle graphene

Petr Stepanov et al.

NATURE (2020)

Article Multidisciplinary Sciences

Cascade of phase transitions and Dirac revivals in magic-angle graphene

U. Zondiner et al.

NATURE (2020)

Article Multidisciplinary Sciences

Strongly correlated Chern insulators in magic-angle twisted bilayer graphene

Kevin P. Nuckolls et al.

NATURE (2020)

Article Physics, Multidisciplinary

Chern bands of twisted bilayer graphene: Fractional Chern insulators and spin phase transition

Cecile Repellin et al.

PHYSICAL REVIEW RESEARCH (2020)

Article Materials Science, Multidisciplinary

Valley magnetism, nematicity, and density wave orders in twisted bilayer graphene

Dmitry Chichinadze et al.

PHYSICAL REVIEW B (2020)

Article Materials Science, Multidisciplinary

Nematic superconductivity in twisted bilayer graphene

Dmitry Chichinadze et al.

PHYSICAL REVIEW B (2020)

Article Multidisciplinary Sciences

Tuning superconductivity in twisted bilayer graphene

Matthew Yankowitz et al.

SCIENCE (2019)

Article Physics, Multidisciplinary

Strong Coupling Phases of Partially Filled Twisted Bilayer Graphene Narrow Bands

Jian Kang et al.

PHYSICAL REVIEW LETTERS (2019)

Article Multidisciplinary Sciences

Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene

Aaron L. Sharpe et al.

SCIENCE (2019)

Article Physics, Multidisciplinary

Electronic correlations in twisted bilayer graphene near the magic angle

Youngjoon Choi et al.

NATURE PHYSICS (2019)

Article Physics, Multidisciplinary

Large linear-in-temperature resistivity in twisted bilayer graphene

Hryhoriy Polshyn et al.

NATURE PHYSICS (2019)

Article Multidisciplinary Sciences

Magic of high-order van Hove singularity

Noah F. Q. Yuan et al.

NATURE COMMUNICATIONS (2019)

Article Materials Science, Multidisciplinary

Nearly flat Chern bands in moire superlattices

Ya-Hui Zhang et al.

PHYSICAL REVIEW B (2019)

Article Materials Science, Multidisciplinary

Chiral twist on the high-Tc phase diagram in moire heterostructures

Yu-Ping Lin et al.

PHYSICAL REVIEW B (2019)

Article Multidisciplinary Sciences

Unconventional superconductivity in magic-angle graphene superlattices

Yuan Cao et al.

NATURE (2018)

Article Physics, Multidisciplinary

Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene

Mikito Koshino et al.

PHYSICAL REVIEW X (2018)

Article Materials Science, Multidisciplinary

Model for the metal-insulator transition in graphene superlattices and beyond

Noah F. Q. Yuan et al.

PHYSICAL REVIEW B (2018)

Article Physics, Multidisciplinary

Itinerant Half-Metal Spin-Density-Wave State on the Hexagonal Lattice

Rahul Nandkishore et al.

PHYSICAL REVIEW LETTERS (2012)

Article Astronomy & Astrophysics

Patterns of dynamical gauge symmetry breaking

Ning Chen et al.

PHYSICAL REVIEW D (2010)