4.8 Article

Excitation Spectrum and Superfluid Gap of an Ultracold Fermi Gas

Journal

PHYSICAL REVIEW LETTERS
Volume 128, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.128.100401

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [SFB-925, 170620586, EXC 2056, 390715994]

Ask authors/readers for more resources

In this work, we measured the excitation spectrum of strongly interacting ultracold Fermi gases using Bragg spectroscopy. The study revealed the smooth transformation from a bosonic to a fermionic superfluid in the BEC-BCS crossover. The results are in excellent agreement with previous experiments and calculations, especially when particle-hole correlations are taken into account.
Ultracold atomic gases are a powerful tool to experimentally study strongly correlated quantum many body systems. In particular, ultracold Fermi gases with tunable interactions have allowed to realize the famous BEC-BCS crossover from a Bose-Einstein condensate (BEC) of molecules to a Bardeen-Cooper-Schrieffer (BCS) superfluid of weakly bound Cooper pairs. However, large parts of the excitation spectrum of fermionic superfluids in the BEC-BCS crossover are still unexplored. In this work, we use Bragg spectroscopy to measure the full momentum-resolved low-energy excitation spectrum of strongly interacting ultracold Fermi gases. This enables us to directly observe the smooth transformation from a bosonic to a fermionic superfluid that takes place in the BEC-BCS crossover. We also use our spectra to determine the evolution of the superfluid gap and find excellent agreement with previous experiments and self-consistent T-matrix calculations both in the BEC and crossover regime. However, toward the BCS regime a calculation that includes the effects of particle-hole correlations shows better agreement with our data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available