4.6 Article

Processing of pain by the developing brain: evidence of differences between adolescent and adult females

Journal

PAIN
Volume 163, Issue 9, Pages 1777-1789

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/j.pain.0000000000002571

Keywords

Pain processing; Brain development; Adolescence; Pain sensitivity; fMRI; Noxious stimuli; Pressure

Funding

  1. Cincinnati Children's Hospital Medical Center's Trustee Grant Award
  2. NIH/NIAMS [R01 AR074795, P30 AR076316]

Ask authors/readers for more resources

Adolescence is a sensitive period for both brain development and the emergence of chronic pain, particularly in females. This study compares pain perception and brain responses in female adolescents and adults and finds that adolescents show greater sensitivity to low-pain and stronger pain-evoked brain responses.
Adolescence is a sensitive period for both brain development and the emergence of chronic pain particularly in females. However, the brain mechanisms supporting pain perception during adolescence remain unclear. This study compares perceptual and brain responses to pain in female adolescents and adults to characterize pain processing in the developing brain. Thirty adolescent (ages 13-17 years) and 30 adult (ages 35-55 years) females underwent a functional magnetic resonance imaging scan involving acute pain. Participants received 12 ten-second noxious pressure stimuli that were applied to the left thumbnail at 2.5 and 4 kg/cm(2), and rated pain intensity and unpleasantness on a visual analogue scale. We found a significant group-by-stimulus intensity interaction on pain ratings. Compared with adults, adolescents reported greater pain intensity and unpleasantness in response to 2.5 kg/cm(2) but not 4 kg/cm(2). Adolescents showed greater medial-lateral prefrontal cortex and supramarginal gyrus activation in response to 2.5 kg/cm(2) and greater medial prefrontal cortex and rostral anterior cingulate responses to 4 kg/cm(2). Adolescents showed greater pain-evoked responses in the neurologic pain signature and greater activation in the default mode and ventral attention networks. Also, the amygdala and associated regions played a stronger role in predicting pain intensity in adolescents, and activity in default mode and ventral attention regions more strongly mediated the relationship between stimulus intensity and pain ratings. This study provides first evidence of greater low-pain sensitivity and pain-evoked brain responses in female adolescents (vs adult women) in regions important for nociceptive, affective, and cognitive processing, which may be associated with differences in peripheral nociception.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available