4.3 Article

Cryptotanshinone Protects against PCOS-Induced Damage of Ovarian Tissue via Regulating Oxidative Stress, Mitochondrial Membrane Potential, Inflammation, and Apoptosis via Regulating Ferroptosis

Journal

OXIDATIVE MEDICINE AND CELLULAR LONGEVITY
Volume 2022, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2022/8011850

Keywords

-

Categories

Funding

  1. National Youth Science and National Natural Science Foundation of China [81804136]

Ask authors/readers for more resources

This study found that cryptotanshinone (CRY) can improve ovarian tissue damage caused by polycystic ovary syndrome (PCOS) by regulating ferroptosis. The specific mechanisms include modulation of oxidative stress, inflammation, and apoptosis signaling pathways.
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of childbearing age. Cryptotanshinone (CRY) has been shown to be effective in reversing reproductive disorders, but whether it can be used in the treatment of polycystic ovary syndrome remains unclear. We aimed to explore whether the mechanism of cryptotanshinone (CRY) in the treatment of polycystic ovary syndrome (PCOS) can be driven via regulating ferroptosis. A rat model of PCOS was established by daily injection of human chorionic gonadotropin and insulin for 22 days. An in vitro model of ischemia-reperfusion (IR) of granulosa cells was established. The in vitro and rat models of PCOS were subjected to different treatments including ferroptosis activators and inhibitors, CRY, and MAPK inhibitor. Oxidative stress was evaluated by measuring the activities of SOD, MDA, and GSH-PX. Total body weight and ovarian weight, as well as the levels of LH and the LH to FSH ratio, significantly increased in rats with PCOS, compared with controls. The expression of Bax was increased in PCOS tissues while PGC1 alpha, NFR1, GPX4, catalase p-ERK, and Bcl-2 were all downregulated. Ferroptosis activator, erastin, had effects similar to those of PCOS while the contrary was found with CRY and ferroptosis inhibitor treatment groups. In vitro, CRY inhibited oxidative stress, MMP, and NF-kappa B and activated MAPK/ERK signaling by regulating ferroptosis. Overall, this study indicated that CRY protects against PCOS-induced damage of the ovarian tissue, via regulating oxidative stress, MMP, inflammation, and apoptosis via regulating ferroptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available