4.6 Article

Optical force spectroscopy for measurement of nonlinear optical coefficient of single nanoparticles through optical manipulation

Journal

OPTICS EXPRESS
Volume 30, Issue 10, Pages 17490-17516

Publisher

Optica Publishing Group
DOI: 10.1364/OE.456122

Keywords

-

Categories

Funding

  1. JSPS KAKENHI [JP16H06504, JP21H05019, JP21J13476]

Ask authors/readers for more resources

Compared to manipulating microparticles and controlling atomic motion, manipulating nanoscale objects is challenging due to the weaker force exerted by light on nanoparticles. However, optical manipulation using electronic resonance effects has enabled researchers to enhance the force on nanoparticles and measure their material properties by observing their motion.
Compared with manipulation of microparticles with optical tweezers and control of atomic motion with atom cooling, the manipulation of nanoscale objects is challenging because light exerts a significantly weaker force on nanoparticles than on microparticles. The complex interaction of nanoparticles with the environmental solvent media adds to this challenge. In recent years, optical manipulation using electronic resonance effects has garnered interest because it has enabled researchers to enhance the force as well as sort nanoparticles by their quantum mechanical properties. Especially, a precise observation of the motion of nanoparticles irradiated by resonant light enables the precise measurement of the material parameters of single nanoparticles. Conventional spectroscopic methods of measurement are based on indirect processes involving energy dissipation, such as thermal dissipation and light scattering. This study proposes a theoretical method to measure the nonlinear optical constant based on the optical force. The nonlinear susceptibility of single nanoparticles can be directly measured by evaluating the transportation distance of particles through pure momentum exchange. We extrapolate an experimentally verified method of measuring the linear absorption coefficient of single nanoparticles by the optical force to determine the nonlinear absorption coefficient. To this end, we simulate the third-order nonlinear susceptibility of the target particles with the kinetic analysis of nanoparticles at the solid-liquid interface incorporating the Brownian motion. The results show that optical manipulation can be used as nonlinear optical spectroscopy utilizing direct exchange of momentum. To the best of our knowledge, this is currently the only way to measure the nonlinear coefficient of individual single nanoparticles. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available