4.7 Article

Efficient dispersion engineering for three-octave-spanning supercontinuum generation in nanophotonic waveguides

Journal

OPTICS AND LASER TECHNOLOGY
Volume 150, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.optlastec.2022.107923

Keywords

Integrated waveguides; Nonlinear optics; Supercontinuum

Ask authors/readers for more resources

The study introduces a dispersion-flattened technology for producing broadband and low anomalous dispersion while minimizing zero-dispersion wavelengths. This structure can be formed by nanophotonic waveguides using different material combinations, achieving flat dispersion ranging from 0 to 27 ps/nm/km across a wide range of wavelengths.
We propose a dispersion-flattened technology for producing broadband and low anomalous dispersion with minimal zero-dispersion wavelengths (ZDWs). This structure can be formed by nanophotonic waveguides using different material combinations. Flat dispersion varying between 0 and 27 ps/nm/km and spanning a range of wavelengths between 1290 and 4570 nm can be achieved. Without applying dispersion hybridization and using complex material combinations, dispersion demonstrates good tolerance to pump wavelength selection and is easier to introduce. Furthermore, the designed structures are applied to generate a supercontinuum over three octaves considering wavelength dependent loss from cladding, which exhibits an excellent bandwidth of - 40 dB even with increasing losses from the waveguide material or structure generation. These findings are useful for supercontinuum generation over multiple octaves in different platforms, which is promising for self-referenced f-2f systems and spectroscopy applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available