4.8 Article

PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production

Journal

ONCOGENE
Volume 41, Issue 13, Pages 1986-2002

Publisher

SPRINGERNATURE
DOI: 10.1038/s41388-022-02219-8

Keywords

-

Funding

  1. Singapore Ministry of Health's National Medical Research Council Transition Award [NMRC/TA/0052/2016]
  2. Cancer Science Institute of Singapore
  3. National University of Singapore, through the National Research Foundation Singapore
  4. Singapore Ministry of Education under its Research Centers of Excellence initiative
  5. Singapore Ministry of Health's National Medical Research Council [NMRC/CIRG/1400/2014]

Ask authors/readers for more resources

Inhibitors of PLK1, a mitotic kinase, have objective responses in refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity. Through a chemical screen, we found that cells deficient in ARID1A tumor suppressor are highly sensitive to PLK1 inhibition, which is unrelated to canonical PLK1 functions. A CRISPR screen revealed that sensitivity in ARID1A deficient cells is dependent on the mitochondrial translation machinery. These findings highlight a new role for PLK1 in maintaining mitochondrial fitness under metabolic stress and offer a strategy for the therapeutic use of PLK1 inhibitors.
Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available