4.4 Article

FTX Attenuates Cerebral Ischemia-Reperfusion Injury by Inhibiting Apoptosis and Oxidative Stress via miR-186-5p/MDM4 Pathway

Journal

NEUROTOXICITY RESEARCH
Volume 40, Issue 2, Pages 542-552

Publisher

SPRINGER
DOI: 10.1007/s12640-022-00485-8

Keywords

FTX; miR-186-5p; MDM4; Cerebral ischemia-reperfusion injury; Apoptosis

Categories

Ask authors/readers for more resources

This study found that the lncRNA FTX can improve cerebral ischemia-reperfusion injury by regulating the miR-186-5p/MDM4 pathway, providing a new therapeutic strategy for stroke impairment treatment.
LncRNA five prime to Xist (FTX) has been identified to exert a protective effect in multiple diseases. However, whether and how FTX attenuates cerebral ischemia-reperfusion injury (CI/RI) is still unclear. To simulate CI/RI, an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) HT22 cell model and an in vivo middle cerebral artery occlusion/reperfusion (MCAO/R) Sprague-Dawley rat model were respectively constructed. In CI/RI plasma samples, OGD/R-challenged HT22 cells, and brain tissues from MCAO/R rats, FTX and mouse double minute 4 (MDM4) expressions were substantially decreased while miR-186-5p abundance was evidently increased. It was also revealed that FTX obviously improved neuronal damage induced by OGD/R through increasing proliferation, reducing apoptosis, and alleviating oxidative stress in OGD/R-challenged HT22 cells. Additionally, FTX positively regulated MDM4 level in OGD/R-treated HT22 cells as a sponge of miR-186-5p. Moreover, miR-186-5p upregulation or MDM4 suppression restored the inhibitory effects of FTX upregulation on OGD/R-triggered neuronal damage in HT22 cells. Therefore, these results suggest that FTX might ameliorate CI/RI by regulating the miR-186-5p/MDM4 pathway, providing a new target for stroke impairment treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available