4.6 Article

A comparative study on prediction of survival event of heart failure patients using machine learning algorithms

Journal

NEURAL COMPUTING & APPLICATIONS
Volume 34, Issue 16, Pages 13895-13908

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00521-022-07201-9

Keywords

Machine learning; Heart failure; Survival prediction; Support vector machine; Artificial neural networks

Ask authors/readers for more resources

Cardiovascular diseases are a leading cause of death worldwide, and machine learning algorithms show promise in predicting patient survival and identifying important risk factors.
Cardiovascular diseases cause approximately 17 million deaths each year and 31% of deaths worldwide. These diseases generally occur as myocardial infarction and heart failure. The survival status, which we used as a target in our classification study, indicates that the patient died or survived before the end of the follow-up period, which is a mean of 130 days. Various machine learning classifiers have been preferred to both predict survival of patients and rank the characteristics corresponding to the most important risk factors. For this purpose, the data set that is occurred totally 299 samples is traditionally divided into 70% for training and 30% for test cluster to be used in machine learning algorithms, with have been analyzed with many methods such as Artificial Neural Networks, Fine Gaussian SVM, Fine KNN, Weighted KNN, Subspace KNN, Boosted Trees, and Bagged Trees. As a result, according to the data obtained, it has been seen that there are algorithms that can predict heart failure diagnosis with full accuracy (100%). Thus, it was concluded that it is appropriate to use machine learning algorithms to predict whether a heart failure patient will survive. This study has the potential to be used as a new supportive tool for doctors when predicting whether a heart failure patient will survive.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available