4.8 Article

Nanostructured block copolymer muscles

Journal

NATURE NANOTECHNOLOGY
Volume 17, Issue 7, Pages 752-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41565-022-01133-0

Keywords

-

Funding

  1. Air Force Office of Scientific Research under the Young Investigator Prize [18RT0680]
  2. National Science Foundation through the DMREF programme [CMMI 2119717]
  3. Materials Research Institute seed grant from The Pennsylvania State University
  4. National Science Foundation [CBET 1946392]
  5. DMREF programme [CMMI 1627197]
  6. Welch Foundation [F-1599]
  7. DOE Office of Science [DE-SC0012704]

Ask authors/readers for more resources

This study reports on the fabrication of nanostructured fibres using solution-phase block copolymer self-assembly and strain-programmed crystallization, which exhibit excellent mechanical properties, multi-trigger actuation, and high-performance rotation. The fibres possess highly aligned nanoscale structures with alternating crystalline and amorphous domains, resembling the pattern of mammalian skeletal muscle. Compared to current actuators, these nanostructured block copolymer muscles show superior efficiency, actuation strain, and mechanical properties, and can perform on/off rotary actuation and multi-trigger actuation.
Nanostructured fibres with highly aligned and alternating crystalline and amorphous domains created from triblock copolymers exhibit excellent mechanical properties, multi-trigger actuation, high-performance contraction and on/off rotation. High-performance actuating materials are necessary for advances in robotics, prosthetics and smart clothing. Here we report a class of fibre actuators that combine solution-phase block copolymer self-assembly and strain-programmed crystallization. The actuators consist of highly aligned nanoscale structures with alternating crystalline and amorphous domains, resembling the ordered and striated pattern of mammalian skeletal muscle. The reported nanostructured block copolymer muscles excel in several aspects compared with current actuators, including efficiency (75.5%), actuation strain (80%) and mechanical properties (for example, strain-at-break of up to 900% and toughness of up to 121.2 MJ m(-3)). The fibres exhibit on/off rotary actuation with a peak rotational speed of 450 r.p.m. Furthermore, the reported fibres demonstrate multi-trigger actuation (heat and hydration), offering switchable mechanical properties and various operating modes. The versatility and recyclability of the polymer fibres, combined with the facile fabrication method, opens new avenues for creating multifunctional and recyclable actuators using block copolymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available