4.8 Article

Slab-derived devolatilization fluids oxidized by subducted metasedimentary rocks

Journal

NATURE GEOSCIENCE
Volume 15, Issue 4, Pages 320-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41561-022-00904-7

Keywords

-

Funding

  1. US National Science Foundation Directorate of Geosciences [EAR-0105927, EAR-0744154, EAR-1650329, EAR-1855208]
  2. Yale University
  3. Yale Peabody Museum of Natural History
  4. Bateman Postdoctoral Fellowship, Department of Earth and Planetary Sciences, Yale University
  5. National Natural Science Foundation of China [42122011]
  6. Deutsche Forschungsgemeinschaft (DFG) [CRC 1114, 235221301]

Ask authors/readers for more resources

Petrological analysis and reactive transport modeling suggest that metasedimentary rocks can oxidize ascending slab-derived fluids and contribute to arc magma generation through redox reactions. These rocks have the potential to remove H-2, CH4, and/or H2S from fluids and oxidize the overlying mantle wedge. The recycling of oxidative weathering products may explain the Phanerozoic increases in arc magma oxygen fugacity.
Metasedimentary rocks atop the downgoing slab oxidize ascending slab-derived dehydration fluids by removing reduced species, according to petrological analysis of subduction complex metasedimentary rocks and reactive transport modelling. Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10-1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic character is imparted by slab fluids or is acquired during ascent and interaction with the surrounding mantle or crust is debated. Here we study the petrology of metasedimentary rocks from two Tertiary Aegean subduction complexes in combination with reactive transport modelling to investigate the oxidative potential of the sedimentary rocks that cover slabs. We find that the metasedimentary rocks preserve evidence for fluid-mediated redox reactions and could be highly oxidized. Furthermore, the modelling demonstrates that layers of these oxidized rocks less than about 200 m thick have the capacity to oxidize the ascending slab dehydration flux via redox reactions that remove H-2, CH4 and/or H2S from the fluids. These fluids can then oxidize the overlying mantle wedge at rates comparable to arc magma generation rates, primarily via reactions involving sulfur species. Oxidized metasedimentary rocks need not generate large amounts of fluid themselves but could instead oxidize slab dehydration fluids ascending through them. Proposed Phanerozoic increases in arc magma oxygen fugacity may reflect the recycling of oxidative weathering products following Neoproterozoic-Palaeozoic marine and atmospheric oxygenation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available