4.8 Article

An engineered prime editor with enhanced editing efficiency in plants

Journal

NATURE BIOTECHNOLOGY
Volume 40, Issue 9, Pages 1394-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41587-022-01254-w

Keywords

-

Funding

  1. National Natural Science Foundation of China [31788103]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA24020102, XDB27030201, XDA24020310]

Ask authors/readers for more resources

In this study, we have improved the editing efficiency of prime editing by engineering the structure of the prime editor and combining it with specific guide RNAs. The optimized prime editor showed significantly increased editing efficiency in plant cells, and when combined with engineered guide RNAs, it resulted in the generation of herbicide-tolerant rice plants.
Prime editing is a versatile genome-editing technology, but it suffers from low editing efficiency. In the present study, we introduce optimized prime editors with substantially improved editing efficiency. We engineered the Moloney-murine leukemia virus reverse transcriptase by removing its ribonuclease H domain and incorporated a viral nucleocapsid protein with nucleic acid chaperone activity. Each modification independently improved prime editing efficiency by similar to 1.8-3.4-fold in plant cells. When combined in our engineered plant prime editor (ePPE), the two modifications synergistically enhanced the efficiency of base substitutions, deletions and insertions at various endogenous sites by on average 5.8-fold compared with the original PPE in cell culture. No significant increase in byproducts or off-target editing was observed. We used the ePPE to generate rice plants tolerant to sulfonylurea and imidazolinone herbicides, observing an editing frequency of 11.3% compared with 2.1% using PPE. We also combined ePPE with the previously reported dual-prime editing guide (peg) RNAs and engineered pegRNAs to further increase efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available