4.8 Article

The field-free Josephson diode in a van der Waals heterostructure

Journal

NATURE
Volume 604, Issue 7907, Pages 653-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-022-04504-8

Keywords

-

Ask authors/readers for more resources

The Josephson diode, which serves as the superconducting analogue to the semiconducting diode, has been realized in a van der Waals heterostructure, showing unique properties such as magnetic-field-free superconductivity and different behaviors under positive and negative currents.
The superconducting analogue to the semiconducting diode, the Josephson diode, has long been sought with multiple avenues to realization being proposed by theorists(1-3). Showing magnetic-field-free, single-directional superconductivity with Josephson coupling, it would serve as the building block for next-generation superconducting circuit technology. Here we realized the Josephson diode by fabricating an inversion symmetry breaking van der Waals heterostructure of NbSe2/Nb3Br8/NbSe2. We demonstrate that even without a magnetic field, the junction can be superconducting with a positive current while being resistive with a negative current. The Delta I-c behaviour (the difference between positive and negative critical currents) with magnetic field is symmetric and Josephson coupling is proved through the Fraunhofer pattern. Also, stable half-wave rectification of a square-wave excitation was achieved with a very low switching current density, high rectification ratio and high robustness. This non-reciprocal behaviour strongly violates the known Josephson relations and opens the door to discover new mechanisms and physical phenomena through integration of quantum materials with Josephson junctions, and provides new avenues for superconducting quantum devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available