4.8 Article

Machine learning-aided engineering of hydrolases for PET depolymerization

Journal

NATURE
Volume 604, Issue 7907, Pages 662-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-022-04599-z

Keywords

-

Funding

  1. ExxonMobil Research and Engineering Company [EM10480.26/UTA16-000509]
  2. University of Texas at Austin [EM10480.26/UTA16-000509]
  3. RRID [SCR_021713, SCR_021756]
  4. Welch Foundation [F-1904]
  5. National Institutes of Health [GM104896]

Ask authors/readers for more resources

Plastic waste is an ecological challenge, and enzymatic degradation offers a potentially green and scalable route for plastic recycling. Engineered PETase shows superior activity in hydrolyzing postconsumer PET, and a closed-loop recycling process is demonstrated.
Plastic waste poses an ecological challenge(1-3) and enzymatic degradation offers one, potentiallygreen and scalable, route for polyesters waste recycling(4). Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste(5), and a circular carbon economy for PET istheoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products(6-10). Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics(11). Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives(12) between 30 and 50 degrees C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 degrees C. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available