4.3 Article

Berberine Is a Promising Alkaloid to Attenuate Iron Toxicity Efficiently in Iron-Overloaded Mice

Journal

NATURAL PRODUCT COMMUNICATIONS
Volume 17, Issue 3, Pages -

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1934578X211029522

Keywords

antioxidant activity; Berberine; iron chelation; iron-overload; natural compounds

Funding

  1. Golestan University of Medical Sciences

Ask authors/readers for more resources

Berberine effectively reduces iron deposition and related symptoms caused by iron overdose, and increases the activity of antioxidant enzymes, thus lowering oxidative conditions.
Iron toxicity in iron-overloaded conditions, including high iron diet and blood transfusion, causes deleterious effects on vital organs. There currently are a number of chemical chelators in clinics to reduce iron concentration, for example, deferoxamine and deferiprone, but these produce diverse side effects. Hence, the need for a safe and effective iron chelator is demanded. To evaluate rigorously the potential of berberine on iron chelation and its anti-oxidant effect, 30 mice were divided into 5 groups of 6. Except for the control group, other groups received iron sucrose 5 times a week for 4 successive weeks as an i.p injection. Afterward, either berberine or deferoxamine was injected for 1 month. The mice were then euthanized and liver, kidney and lungs were carefully removed for biochemical and pathological analysis. In comparison with the iron group with an extraordinary amount of iron deposits, berberine (20 mg/kg/day) dramatically reduced iron sedimentation in all tissues (P < 0.01). Moreover, berberine lowered clinical symptoms of iron overdose, including inflammation, fibrosis and tissue degeneration. In terms of the activity of antioxidant enzymes, catalase and superoxide dismutase, iron overdose greatly reduced their activity compared to the control group. Berberine progressively increased their activity in comparison with the controls by lowering oxidative conditions (P < 0.05). Iron overdose similarly increased lipid peroxidation by increasing the level of malondialdehyde. Berberine promptly suppressed lipid peroxidation in an efficient manner and reduced the level of malondialdehyde, a marker of lipid peroxidation in the tissues. Accordingly, berberine, as a natural antioxidant compound, could adequately serve as a substitute for chemical chelators with fewer side effects and comparable effectiveness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available