4.6 Article

Characterization of Peanut Protein Hydrolysate and Structural Identification of Umami-Enhancing Peptides

Journal

MOLECULES
Volume 27, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/molecules27092853

Keywords

peanut protein hydrolysate; umami-enhancing peptide; characterization; isolation and purification; amino acid sequence

Funding

  1. Henan Academy of Agricultural Sciences

Ask authors/readers for more resources

Umami peptides from defatted peanut powder hydrolysate contribute to umami taste and enhancement. Low molecular weight peptides play a significant role in umami perception.
Umami peptides are naturally found in various foods and have been proven to be essential components contributing to food taste. Defatted peanut powder hydrolysate produced by a multiprotease (Flavorzyme, Alcalase, and Protamex) was found to elicit an umami taste and umami-enhancing effect. The taste profiles, hydrolysis efficiency, amino acids, molecular weight distribution, Fourier transform infrared spectroscopy (FT-IR), and separation fractions obtained by ultrafiltration were evaluated. The results showed that peanut protein was extensively hydrolyzed to give mainly (up to 96.84%) free amino acids and peptides with low molecular weights (<1000 Da). Furthermore, beta-sheets were the major secondary structure. Fractions of 1-3000 Da and <1000 Da prominently contributed to the umami taste and umami enhancement. To obtain umami-enhancing peptides, these two fractions were further purified by gel filtration chromatography, followed by sensory evaluation. These peptides were identified as ADSYRLP, DPLKY, EAFRVL, EFHNR, and SDLYVR by ultra-performance liquid chromatography (UPLC), and had estimated thresholds of 0.107, 0.164, 0.134, 0.148, and 0.132 mmol/L, respectively. According to the results of this work, defatted peanut powder hydrolysate had an umami taste and umami-enhancing effect, and is a potential excellent umami peptide precursor material for the food industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available