4.6 Article

Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors

Journal

MOLECULES
Volume 27, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/molecules27062033

Keywords

electroanalysis; modified electrode; rare earth metal oxides (REMO); multiwalled carbon nanotubes (MWCNTs); sulfisoxazole; peak current; limit of detection

Funding

  1. Qatar University [QUST-1-CAS-2022-338]

Ask authors/readers for more resources

In this study, new electrochemical sensors based on the modification of glassy carbon electrode with multiwalled carbon nanotubes and rare metal oxides were fabricated. These sensors showed higher sensitivity and lower detection limits for sulfonamide drugs in water and biological samples.
In this work, new electrochemical sensors based on the modification of glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs)-rare metal oxides (REMO) nanocomposites were fabricated by drop-to-drop method of MWCNTs-REMO dispersion in ethanol. REMO nanoparticles were synthesized by precipitation followed by hydrothermal treatment at 180 degrees C in absence and presence of Triton(TM) X-100 surfactant. Cyclic voltammetry (CV) analysis using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE sensors were used for the analysis of sulfisoxazole (SFX) drug in water samples. The results of CV analysis showed that MWCNTs-REMO@GCE sensors have up to 40-fold higher sensitivity with CeO2 compared to the bare GCE sensor. The estimated values of the limit of detection (LoD) of this electrochemical sensing using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE electrodes reached 0.4 and 0.7 mu M SFX in phosphate buffer pH = 7, respectively. These findings indicate that MWCNTs-REMO@GCE electrodes are potential sensors for analysis of sulfonamide drugs in water and biological samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available