4.6 Article

Dual Spinneret Electrospun Polyurethane/PVA-Gelatin Nanofibrous Scaffolds Containing Cinnamon Essential Oil and Nanoceria for Chronic Diabetic Wound Healing: Preparation, Physicochemical Characterization and In-Vitro Evaluation

Journal

MOLECULES
Volume 27, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/molecules27072146

Keywords

nanoceria; dual spinneret electrospinning; PU; PVA-gelatin-based nanofibrous scaffolds; diabetic wound healing

Funding

  1. Islamic Development Bank (IDB), Jeddah, Saudi Arabia, through the IDB Merit Scholarship Program [36/11207330, 23/EGT/P34]
  2. National Science Centre in Poland [2018/30/Q/NZ7/00281]

Ask authors/readers for more resources

In this study, a dual spinneret electrospinning technique was used to produce a novel polyurethane and polyvinyl alcohol-gelatin nanofibrous scaffold. By incorporating cinnamon essential oil and nanoceria, the mechanical and thermal stability of the scaffold were improved. Cytotoxicity evaluation showed that the presence of cinnamon essential oil and nanoceria in the scaffold enhanced cell population and inhibited the growth rate of Staphylococcus aureus.
In this study, a dual spinneret electrospinning technique was applied to fabricate a series of polyurethane (PU) and polyvinyl alcohol-gelatin (PVA/Gel) nanofibrous scaffolds. The study aims to enhance the properties of PU/PVA-Gel NFs loaded with a low dose of nanoceria through the incorporation of cinnamon essential oil (CEO). The as-prepared nCeO(2) were embedded into the PVA/Gel nanofibrous layer, where the cinnamon essential oil (CEO) was incorporated into the PU nanofibrous layer. The morphology, thermal stability, mechanical properties, and chemical composition of the produced NF mats were investigated by STEM, DSC, and FTIR. The obtained results showed improvement in the mechanical, and thermal stability of the dual-fiber scaffolds by adding CEO along with nanoceria. The cytotoxicity evaluation revealed that the incorporation of CEO to PU/PVA-Gel loaded with a low dose of nanoceria could enhance the cell population compared to using pure PU/PVA-Gel NFs. Moreover, the presence of CEO could inhibit the growth rate of S. aureus more than E. coli. To our knowledge, this is the first time such nanofibrous membranes composed of PU and PVA-Gel have been produced. The first time was to load the nanofibrous membranes with both CEO and nCeO(2). The obtained results indicate that the proposed PU/PVA-Gel NFs represent promising platforms with CEO and nCeO(2) for effectively managing diabetic wounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available